IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1982

Chemistry of 19-electron dinitrosyl complexes of tungsten and secondary carbene derivatives of iron

Siu-Yeung Yu Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Yu, Siu-Yeung, "Chemistry of 19-electron dinitrosyl complexes of tungsten and secondary carbene derivatives of iron " (1982). *Retrospective Theses and Dissertations*. 8400. https://lib.dr.iastate.edu/rtd/8400

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

. .

•

-·

Yu, Siu-Yeung

CHEMISTRY OF 19-ELECTRON DINITROSYL COMPLEXES OF TUNGSTEN AND SECONDARY CARBENE DERIVATIVES OF IRON

Iowa State University

Рн.D. 1982

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106 _ ____.

•

-

Chemistry of 19-electron dinitrosyl complexes of tungsten and secondary carbene derivatives of iron

by

Siu-Yeung Yu

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry Major: Chemistry (Inorganic-Organic)

Approved:

Signature was redacted for privacy.

In Charge of Majow Work

Signature was redacted for privacy.

For the Major Depaftment

Signature was redacted for privacy.

For 'the' Graduate' College

lowa State University Ames, lowa

1982

TABLE OF CONTENTS

		Page
DEDICATION		īv
SYMBOLS AND A	ABBREVIATIONS	• •
GENERAL INTRO	DUCTION	1
SECTION	I. SYNTHESIS, STRUCTURE AND REACTIONS OF 19-ELECTRON (n ⁵ -C ₅ H ₅)W(NO) ₂ (PR ₃) RADICALS	7
INTRODUCTION		8
EXPERIMENTAL		10
RESULTS AND D	DISCUSSION	17
REFERENCES		33
APPENDIX 1.	FINAL POSITIONAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS FOR Cp(NO) ₂ WP(OPh) ₃	35
APPENDIX 2.	FINAL THERMAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS FOR Cp(NO) ₂ WP(OPh) ₃	38
APPENDIX 3.	STRUCTURAL FACTORS FOR Cp(NO) ₂ WP(OPh) ₃	40
SECTION	II. THE CHEMISTRY OF THIOMETHOXYL AND AMINO SECONDARY CARBENE COMPLEXES OF IRON	48
INTRODUCTION		49
EXPERIMENTAL		67
RESULTS AND	DISCUSSION	104
REFERENCES		199

~

APPENDIX 1.	FINAL POSITIONAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS FOR {Cp(CO)_Fe[CH(SMe)P(OCH_)_CMe]}PF<	207
APPENDIX 2.	THERMAL PARAMETERS AND THEIR ESTIMATED	,
	${Cp(C0)}_{2}Fe[CH(SMe)P(OCH_{2})_{3}CMe]}PF_{6}$	210
APPENDIX 3.	STRUCTURAL FACTORS FOR {Cp(CO) ₂ Fe[CH(SMe)P(OCH ₂) ₃ CMe]}PF ₆	212
SUMMARY		219
ADDITIONAL LI	TERATURE CITED	224
ACKNOWLEDGMEN	ITS	226

Page

DEDICATION

.

.

. ?

To my mother and father

.

SYMBOLS AND ABBREVIATIONS

-

acac	acetylacetonato ligand
Bu	butyl
br	broad
Ср	n ⁵ -cyclopentadienyl
Су	cyclohexyl
ď	doublet .
Dabco	1,4 diazabicyclo [2,2,2] octane
dppe	1,2 bis(diphenylphosphino) ethane
Eqn.	equation or reaction
eqv.	equivalent
Et	ethyl
ĥ	heptet
L ·	donor ligand
М	metal atom or complex
m	multiplet
Me	methyl
Ph	phenyl
PPN ⁺	[(Ph ₃ P) ₂ N] ⁺
Pr	propyl
q	quartet
Pyr	pyridine
R	organic substituent
t	triplet

THF	tetrahydrofuran
TMS	tetramethylsilane
ТРР	meso-tetraphenylporphyrin
ν	infrared stretching mode

.

vi

GENERAL INTRODUCTION

Nitrosyl Complexes

Transition metal nitrosyl complexes have been known for years¹, although they have attracted less attention than metal carbonyl complexes. Nevertheless, hundreds of publications concerning nitrosyl compounds have been cited.

The bonding of an NO ligand to a metal is similar to that of CO; the sp hybridized lone electron pair on the nitrogen is bound to a metal in a σ fashion while the π * orbitals of the NO accept electron density from the metal d orbitals via a π interaction. The π -bonding effect strengthens the M-N bond and weakens the N-O bond; the extent of this effect depends upon the metal and its auxiliary ligands. By and large, the NO ligand is regarded as being a better π acid than CO.

The bonding modes for metal coordinated terminal NO ligands are believed to be diverse, including those in which the NO is a one or three electron donor ligand. As a single electron donor ligand, the unpaired electron on nitrogen is bonded to the metal forming a bent M-N-O angle (Figure 1-A). The M-N-O angle in these complexes is found to be in the range of 120-140° by X-ray crystallographic studies.² The v(NO) frequencies for bent NO complexes fall in the 1525-1690 cm⁻¹ range. As a three-electron donor ligand, the lone pair and unpaired electrons are all involved in bonding with the metal (Figure 1-B). This type of bonding often gives M-N-O angles which are close to linear

1

(170-175)².

In recent years, the chemistry of the coordinated NO ligand has been explored³. Based on studies of reactions between NO complexes and nucleophiles, it was suggested that mononitrosyl metal complexes having v(NO) values greater than 1886 cm⁻¹ or f(NO) higher than 13.8 mdyn Å⁻¹ are susceptible to nucleophilic attack at the NO nitrogen atom. Though less predictable, low v(NO) wavenumber complexes, below 1806 but as high as 1852 cm⁻¹, are liable to attack by electrophiles at the nitrogen.

Figure 1. Nitrosyl bonding modes

M=N=0

В

Carbene Complex

One of the most intriguing developments in transition-metal chemistry is the discovery of metal carbene complexes. In 1964, Fischer and Massböl⁴ successfully synthesized a stable carbene complex of tungsten, $(CO)_5 W[C(OCH_3)Ph]$. Since that initial discovery, hundreds of carbene complexes have been characterized, and their chemistry has proven to be rich and varied.⁵⁻⁶ The popularity of transition-metal carbene chemistry was partially sparked by interest in a number of metal-catalyzed organic reactions, olefin metathesis,⁷⁻⁸ Fischer-Tropsch synthesis⁹⁻¹¹ and cyclopropanation,¹²⁻¹³ in which a metal carbene is postulated as a key intermediate. Potential industrial applications of these catalytic reactions have stimulated in recent years much interest in the roles which metal carbenes play in these reactions.

An isolated carbone group is frequently depicted as :CXY. When it is incorporated into an organometallic compound by bonding to the metal, the resulting complex is written as LnM(:CXY), where M is the metal and Ln represents the auxiliary ligands bonded to the metal. In general, the structure of a transition-metal carbone complex is planar where X, Y and M are approximately coplanar about the carbone carbon, C_{carb} (Figure 2). However, the geometry of the carbone ligand relative to Ln varies considerably; for example, in $Cp(CO)_2FeCH_2^+$, the carbone can be in an axial (A), equatorial (B) or somewhere between the two positions with respect to Ln (Figure 3).

Figure 2.

Bonding scheme for carbene ligand

А

Figure 3.

The possible configurations for $Cp(CO)_2FeCH_2^+$

В

A theoretical calculation ¹⁴ suggests A is more favorable than B due to better orbital overlap. The same conclusion is also reached for $Cp(PH_3)_2FeCH_2^+$. ¹⁵ However, in the case of $Cp(CO)NOFeCH_2^{2+}$, ¹⁶ the carbene ligand adopts a geometry almost coincident with the metalnitrosyl bond (Figure 4).

The bonding of a carbene ligand in organometallic compounds may be represented by the three canonical forms illustrated in Figure 5.

Figure 5. Resonance structures for carbene complexes

The C_{carb} is bonded to the metal by donating a pair of electrons localized in an sp² hybridized orbital into a vacant metal orbital; at the same time the empty C_{carb} Pz orbital which is perpendicular to the M-X-Y plane accepts d-electron density from the metal and from the lone pair P-electrons of the adjacent X and Y groups. The extent of d-P and p-p π bonding is primarily dependent upon the nature of the X and Y groups. When either X or Y is a heteroatom (N, 0 or S) with lone pairs available for π backbonding to the C_{carb} , some double-bond character between C_{carb} and X, Y is expected as represented by resonance structure C. When X and Y are hydrogen atoms or alkyl groups, only d-P π backbonding from the metal is possible and is best represented by resonance structure A. Finally, when X and Y are either aryl or alkene groups, carbene bonding is most accurately described by a combination of A and C.

Empirically, carbone complexes with structures more closely resembling C are more stable than those with structure A. Indeed, most well-characterized and stable carbone complexes reported are p- π electron stabilized by X or Y groups containing N, O or S. In contrast, few methylene complexes, MCH₂, have been cited in the literature and they tend to be very unstable.¹⁷⁻²¹ In general, the stability of a series of homologous complexes decreases in the order: NR₂ > SR <u>></u> SeR > OR > aryl > alkyl > H.^{5,22}

With few exceptions, the carbene ligand reacts as an electrophilic center and is most accurately represented by resonance form B. That is,

5

an incoming nucelophile preferably attacks the empty Pz of the C_{carb} ; then, the C_{carb} rehybridizes to an sp³ geometry affording the metal σ -alkyl complex.

Explanation of Dissertation Format

The material in this dissertation is organized in two sections. The numbering of literature references, figures, equations, tables, schemes and appendices are applicable only to those contained within that section, and the references are listed at the end of the text of each section. Those literature references cited in General Introduction are summarized in Additional Literature Cited.

SECTION I. SYNTHESIS, STRUCTURE AND REACTIONS OF 19-ELECTRON (n⁵-c₅H₅)W(NO)₂(PR₃) RADICALS

INTRODUCTION

There has been much interest in the reactions of metal carbonyl ligands with nucleophiles such as amines and alkoxides, le.g.,

$$M-C\equiv 0^{+} + 0R^{-} \longrightarrow M-C \swarrow 0$$
(1)

to give carbamoyl and alkoxycarbonyl complexes. While much is known about transition metal nitrosyl complexes, 2^{-6} there are in contrast to the metal carbonyl situation, still relatively few examples of alkoxide attack at nitrosyl ligands to yield alkyl nitrite complexes, 7^{-9}

$$M-N=0^{+}+OR^{-}$$
 (2)

Such reactions appear to occur only in electron-poor complexes in which the v(NO) frequency is greater than 1850 cm^{-1} .

Although the v(CO) frequency $(2116 \text{cm}^{-1})^{10}$ of $CpW(NO)_2(CO)^+$ indicates that this complex is sufficiently electron-poor to promote nucleophilic attack at the carbonyl group, its reactions with alkoxides and amines only yielded products resulting from the displacement of the CO group. This result, together with others,¹¹ suggests that high v(CO) values not only indicate enhanced CO susceptibility to nucleophilic attack but also weakened CO bonding to the metal which makes CO displacement more likely. To probe the possibility that nucleophiles would attack the NO groups in this electron-poor system, we examined the reactions of the phosphite-substituted complexes, $CpW(NO)_2[P(OR)_3]^+$,¹⁰ where $Cp = n^5 - C_5H_5$. In reactions with alkoxides, the surprising result was that no products resulting from nucleophilic attack on the NO were identified, but instead only one-electron reduction products $CpW(NO)_2[P(OR)_3]$ were isolated.

EXPERIMENTAL

General Procedure

The complexes $[CpW(NO)_2(P(OR)_3]PF_6$, and $[CpW(NO)_2(PPh_3)]PF_6$ were prepared as described in the literature.¹⁰ The supporting electrolyte $[(\underline{n}-Bu)_4N]BF_4$ for the electrochemical studies was prepared by mixing $[(\underline{n}-Bu)_4N]Br$ and 48% aqueous HBF₄ in water, collecting the precipitate by filtration, recrystallizing it twice from acetonediethyl ether, and drying it in vacuum. Reagent-grade CH_2Cl_2 was stored over molecular sieves. Other chemicals were purchased from commercial sources.

ESR spectra of solutions were obtained on a Varian E-3 spectrometer operating at 9.52 GHz. The solutions, prepared with acetone deaerated by freeze-thawing, were studied in flat quartz cells at -28°C under argon. ESR spectra of solids were measured on a Bruker ER 220D SR at about 9.5 GHz at ambient temperature. Infrared spectra were recorded on a Perkin-Elmer Model 281 spectrophotometer.

Hydrocarbon products were analyzed on a Varian 3700 FID gas chromatograph equipped with a 1/8" x 6' 5% OV 101 column. Other organic products were analyzed on a Varian 1700 TCD gas chromatograph using a 1/4" x 15' 10% DC550 column. Electrochemical experiments were carried out on a Princeton Applied Research model 173 potentiostat and model 175 universal programmer. Cyclic voltammograms were obtained using a platinum disc working electrode, a platinum wire counter electrode, and a saturated (NaCl) calomel (SSCE) reference electrode. The solutions contained approximately 1 x 10^{-3} M complex and 0.1 M [(<u>n</u>-Bu)₄N]BF₄ supporting electrolyte; the scan rate was 20 mV/s.

Synthesis and Reactions

Reduction and oxidization

Synthesis of $CpW(NO)_2(L)$ by NaOR reduction A 0.035 g (0.66 mmol) sample of NaOMe was suspended in 5 mL of CH_2Cl_2 under an N₂ atmosphere. Subsequently, 0.10 g (0.13 mmol) of $[CpW(NO)_2(P(OPh)_3)]PF_6$ was added to the solution. The green mixture was stirred for 30 min. at room temperature. The solution had then become red-brown and was evaporated at 25°C under vacuum; the residue was extracted twice with 15 mL of diethyl ether. The solution was filtered through Celite under nitrogen pressure. Pentane (10 mL) was added to the purple ether solution which was then chilled to $-20^{\circ}C$ in a CCl_4 -dry ice bath overnight. Analytically pure purple crystals of $CpW(NO)_2(P(OPh)_3)$ were obtained (0.025 g, 31%). Anal. Calcd: C, 44.62; H, 3.23; N, 4.52. Found: C, 44.57; H, 3.29; N, 4.58.

The other complexes $CpW(NO)_2(PR_3)$ were prepared by the same method in similar yields, and were characterized by their IR spectra (Table 2). The $CpW(NO)_2(PR_3)$ complexes are very sensitive to air and should be stored under argon at -20°C. A procedure similar to that used in the NaOMe reaction was also used for the other alkoxide (NaOCH₂Ph, NaOEt, NaOCMe₃ and NaOCH(CH₃)₂) reduction reactions.

Reduction of $[CpW(NO)_2(L)]PF_6$ with N_2H_4 . H_2O A 0.10 g (0.13 mmol) sample of $[CpW(NO)_2(P(OPh)_3)]PF_6$ was dissolved in 5 mL of CH_2Cl_2 under an N_2 atmosphere. Subsequently, 17.5 μ L(0.66 mmol) of N_2H_4 . H_2O (64% in H_2O) was injected through a rubber septum into the CH_2Cl_2 solution. The greenish solution turned red within 1 min., and the solvent was removed under vacuum. Using the same work-up employed in the previous synthesis, 0.053 g (65%) of IIa was obtained. Complexes IIb and IIc were also obtained in good yields utilizing this method (50-60%).

Reduction of $[CpW(NO)_2(P(OPh)_3)]PF_6$ with NaOH To a suspension of crushed NaOH (0.40 g, 10 mmol) in 5 mL of CH_2Cl_2 under an N₂ atmosphere was added 0.20 g (0.26 mmol) of $[CpW(NO)_2(P(OPh)_3)]PF_6$ and 0.1 mL of degassed water. The mixture was allowed to react at room temperature for 30 min. Following the work-up procedure described for the NaOR reduction, 0.042 g (26%) of $CpW(NO)_2(P(OPh)_3)$ was isolated.

Reduction of $[CpW(NO)_2(P(0Ph)_3)]PF_6$ with Zn Zinc dust (0.20 g, 3.1 mmol) was added to a solution of $[CpW(NO)_2(P(0Ph)_3)]PF_6$ (0.05 g, 0.07 mmol) in 5 mL of THF. After stirring the mixture at room temperature for 30 min, $CpW(NO)_2(P(0Ph)_3)$ was isolated as given in the NaOR reduction procedure in 24% (0.01 g) yield. $\frac{\text{Reduction of } [Cp(NO)_2W(P(OPh)_3)]PF_6 \text{ with } PPN[Co(CO)_4]}{PPN[Co(CO)_4](0.05g, 0.07 \text{ mmol}) \text{ was added to a solution of } [Cp(NO)_2W(P(OPh)_3]PF_6 (0.05g, 0.07 \text{ mmol}) \text{ in 5 ml THF. A purple solution was obtained instantly. The solvent was distilled into a liquid-N₂ trap and found to contain Co(CO)_3NO (vide infra). The remaining purple solid was extracted with Et₂O to give a mixture of Cp(NO)_2W(P(OPh)_3) and an orange product. The orange product, which could not be separated from the radical was identified by its ³¹P NMR and IR spectra to be Cp(NO)(CO)W(P(OPh)_3), which was synthesized independently in refluxing toluene solution of Cp(NO)W(CO)₂ and P(OPh)₃.¹²$

$$IR(CH_2Cl_2)$$
 of $Cp(NO)(CO)W(P(OPh)_2)$: 1926(s,v(CO)),1623(s,v(NO))

$${}^{31}P(CDC1_3): 154.82(JwP = 716.9)$$

Reaction of $CpW(NO)_2(P(OPh)_3)$, IIa, with $[Ph_3C]BF_4$ A 0.027 g (0.044 mmol) sample of $CpW(NO)_2(P(OPh)_3)$ was dissolved in 2 mL of CH_2Cl_2 under an N₂ atmosphere, and 0.015 g (0.046 mmol) of $[Ph_3C]BF_4$ was added. The purple solution turned green immediately. The solvent was removed under vacuum, and the green residue was extracted with 6 mL of diethyl ether. The extract was filtered through a glass fiber filter, and the solvent was slowly evaporated from the filtrate in air; a white precipitate was obtained. The solid was washed with acetone and dried under vacuum, leaving 0.002 g (13%) of $Ph_3COOCPh_3$ which was identified by its melting point¹³ and mass spectrum. The green residue was redissolved in CH_2Cl_2 and was identified as Ia (88%) by the positions and intensities of its v(NO) IR absorptions.

Reaction of IIa with HSO_3CF_3 A 0.03 g (0.05 mmol) sample of IIa was dissolved in 2 mL of CH_2CI_2 under N₂, and 4.4 µL (0.071 mmol) of HSO_3CF_3 was injected into the solution. A green solution was obtained immediately. It was diluted further with an additional 4 mL of CH_2CI_2 ; Ia (75%) was identified in the infrared spectrum of the solution. The same procedure was employed in the reaction of $CpW(NO)_2(P(OPh)_3)$ with CH_3SO_3F . The CH_3SO_3F reaction was complete within 1 min., and Ia (70%) was identified in solution by IR; the gas phase analyzed by GC contained ethane.

Reaction of IIa with $AgBF_4$ A 0.03 g (0.05 mmol) sample of IIa was dissolved in 2 mL of CH_2CI_2 under N_2 , and 0.01 g (0.05 mmol) of $AgBF_4$ was added to the solution. The purple solution became green within 1 min. The resulting solution was analyzed by IR and contained Ia(80%).

Reaction of IIa with I₂ A 0.03 g (0.05 mmol) sample of IIa was dissolved in 2 mL of CH_2CI_2 under N₂, and a small crystal of I₂ was added to the solution. The purple solution gradually turned green in a period of 15 min. Ia and $CpW(NO)_2I$ were identified in the reaction mixture by their infrared spectra. Stirring the solution for an additional 15 min resulted in the disappearance of 1a and the increase of CpW(NO)₂I to about 75%.

X-Ray Data

Collection and refinement

<u>Crystal data</u> $CpW(NO)_2(P(0Ph)_3)$, MW 618.58, monoclinic, P2₁/n, a = 9.810(4), b = 14.450(7), c = 15.45(1) Å, β = 91.04(5)^o, V = 2189.7 Å³, ρ_{calcd} = 1.876 g/cm³, Z = 4 and μ = 56.9 cm⁻¹.

<u>Data acquisition</u> Automated Syntex P2₁ four-circle diffractometer; Mo K_{α} ($\lambda = 0.71069$ Å); ω -scan; 4170 reflections measured in almost 4 octants; 20 \leq 50^o; Lorentz-polarization, absorption¹⁴ and decomposition corrections applied; 2581 reflections with $1 \geq 3\sigma_1$ after averaging; agreement between equivalent reflections is 4%.

The title compound yielded purple plate-like crystals which were readily indexed using 12 independent reflections and an automatic indexing procedure¹⁵. Appreciable (approximately 10%) and accelerating decay was noted approximately midway through data collection; therefore, a second crystal was mounted and used for the latter part of data collection and the two data sets scaled to a common basis. The standard heavy atom technique was used for structural solution, and a combination of block matrix-full matrix least-squares refinement¹⁶ of all non-hydrogen atoms converged to conventional and weighted residuals of R = 0.061 and R_w = 0.067, respectively. The scattering factors¹⁷ were modified for anomalous dispersion effects¹⁸ and hydrogens were included but not refined. The bond distances, angles (Table 1); atom positions (Appendix 1); thermal parameters (Appendix 2) and structural factors (Appendix 3) are listed.

RESULTS AND DISCUSSION

Synthesis

Radical

Reduction of $CpW(NO)_2(L)^+$ If the NO groups are each considered 3-electron donors, the $CpW(NO)_2(L)^+$ complexes are 18-electron systems. They react with a variety of reducing agents to give (Eqn. 3) the 19-electron complexes $CpW(NO)_2(L)$.

$$CpW(NO)_{2}(L)^{+} \xrightarrow{reducing}_{agent} CpW(NO)_{2}(L)$$

$$la-c \qquad (3)$$

$$L = P(OPh)_{3}(la), PPh_{3}(lb), P(OMe)_{3}(lc)$$

$$reducing agents = OR^{-}, OH^{-}, N_{2}H_{4}.H_{2}O, Zn$$

$$CpW(NO)_{2}(P(OPh)_{3})^{+} + Co(CO)_{4}^{-} \xrightarrow{} CpW(NO)_{2}(P(OPh)_{3}) + CpW(NO)CO(P(OPh)_{3}) + CpW(NO)CO(P(OPh$$

The reaction of $CpW(NO)_2(P(OPh)_3)^+$, Ia, with excess NaOMe in CH_2Cl_2 produces a purple solution from which an air- and heat-sensitive purple compound (IIa) is isolated in 31% yield. In air, IIa decomposes in solution within 30 minutes. Even in the solid state under argon at -20^oC, it shows evidence of decomposition within 15 days

The same purple compound is isolated from reactions of Ia with $PhCH_2O^-$, i-PrO⁻, t-BuO⁻, EtO⁻, and OH⁻. The mechanism of these reductions is not known, but the alkoxide may act as a one-electron donor giving RO· as the initial product. Subsequently, the β -H or alkyl group of RO· could be lost or abstracted by another RO· to give the corresponding aldehyde or ketone and alcohol¹⁹. In support of this possibility is the GC detection of PhCHO and PhCH₂OH as products of the reaction of Ia with PhCH₂O⁻, The complexes, CpW(NO)₂(PPh₃)⁺, Ib, and CpW(NO)₂(P(OMe)₃)⁺, Ic, are also reduced to give similar yields of IIb and IIc, but these products are much less stable thermally and to air than IIa. Due to their instability, they were only characterized by their spectra and electrochemistry.

A still better reducing agent is hydrazine hydrate, $N_2H_4 \cdot H_20$, which converts Ia to IIa in 65% yield. This is also the more effective reducing agent for the preparations of IIb and IIc. Powdered Zn reduces Ia, but the reaction is much slower (\sim 30 min.) and decomposition of the product IIa greatly reduces the yield. Finally, PPN(Co(CO)₄) also reduces Ia to IIa; though, Co(CO)₃NO and CpW(NO)(CO)(P(OPh)₃) are also produced (Eqn. 4).

Structure of $CpW(NO)_2(P(0Ph)_3)$ Although the spectroscopic properties of the $CpW(NO)_2(L)$ compounds are consistent with a mononuclear complex, there was some question whether these 19-electron compounds might be dimers, especially in the solid state.

18

To examine this possibility, as well as to determine whether the added electron causes the expected linear NO in $CpW(NO)_2(L)^+$ to bend in the neutral complex, an X-ray structural investigation of $CpW(NO)_2(P(OPh)_3)$, IIa, was performed.

As shown in the ORTEP drawing (Fig. 1) of IIa, the complex is clearly mononuclear with a 3-legged piano-stool structure. There are no unusually short distances between molecules which would suggest intermolecular interactions. Bond distances and angles are given in Table 1. Within experimental error, the W-C cyclopentadienyl distances are equal, and the C-C distances in the ring are equal within approximately 3 standard deviations, yet the C_{23} - C_{19} distance (1.46Å) is somewhat longer than the average (1.40Å). Both the W-C and C-C distances of the Cp ring in IIa are comparable to those in the 18-electron complex CpW(NO)₂C1.²⁰

If one assumes that the 18-electron $CpW(NO)_2(P(OPh)_3)^+$ complex has a structure very similar to that of structurally characterized $CpW(NO)_2Cl$, then any deviation in the structure of IIa from $CpW(NO)_2Cl$ might be attributed to effects of the extra electron in IIa. The major differences between IIa and $CpW(NO)_2Cl$ occur in the distances and angles associated with the NO ligands; these are shown in Fig. 2. There is much discussion in the literature^{2-7,21} about the influence of electron density on M-N-O bond angles in metal nitrosyl complexes. In some systems, additional electrondensity provided to the complex causes a linear M-N-O bond to

19

Figure 1. ORTEP Drawing of CpW(NO)₂(P(OPh)₃), IIa

۰.

Α.	Bond dista	nces		, , , , , , , , , , , , , , , , , , ,	
	W-P	2.386(4)	02-07	1.41(1)	
	W-N1	1.78(1)	03-013	1.39(1)	
	W-N2	1.80(1)	C1-C2	1.39(2)	
	W-C19	2.30(2)	C2-C3	1.37(3)	
	W-C20	2.32(2)	C3-C4	1.37(3)	
	W-C21	2.33(2)	C4-C5	1.39(3)	
	W-C22	2.34(1)	C5-C6	1.37(2)	
	W-C23	2.32(2)	C6-C1	1.37(2)	
	N1-04	1.22(2)	C7-C8	1.36(2)	
	N2-05	1.20(2)	c8-c9	1.39(2)	
	P-01	1.58(1)	C9-C10	1.36(2)	
	P-02	1.59(1)	C10-C11	1.41(2)	
	P-03	1.58(1)	C11-C12	1.41(2)	
	C19-C20	1.35(3)	C12-C7	1.35(2)	
	C20-C21	1.38(3)	C13-C14	1.41(2)	
	C21-C22	1.39(3)	C14-C15	1.46(2)	
	C22-C23	1.41(2)	C15-C16	1.40(3)	
	C23-C19	1.46(3)	C16-C17	1.33(3)	
	01-C1	1.43(2)	C17-C18	1.43(2)	
			C18-C13	1.33(2)	

Table 1. Interatomic distances (\AA) and bond angles and their estimated standard deviations (in parentheses) for $CpW(NO)_2P(OPh)_3$

Table 1. continued

Β.	Bond angles			
	W-N1-04	174.9(1.2)	02-C7-C12	117(1)
	W-N2-05	165.7(1.3)	c7-c8-c9	119(1)
	N1-W-N2	102.7(6)	c8-c9-c10	119(1)
	P-W-N1	89.0(4)	C9-C10-C11	121(1)
	P-W-N2	91.0(5)	C10-C11-C12	117(1)
	W-P-01	119.0(4)	C11-C12-C7	119(1)
	W-P-02	119.4(4)	C12-C7-C8	123(1)
	W-P-03	113.7(4)	03-013-014	114(1)
	01-P-03	104.0(6)	03-013-018	120(1)
	01-P-02	98.2(6)	C13-C14-C15	116(1)
	02-P-03	99.2(6)	c14-c15-c16	117(1)
	01-01-06	120(1)	¢15-c16-c17	121(1)
	01-01-02	117(1)	c16-c17-c18	122(1)
	C1-C2-C3	118(1)	C17-C18-C13	116(1)
	C2-C3-C4	120(1)	c18-c13-c14	124(1)
	C3-C4-C5	118(1)	C19-C20-C21	111(2)
	C4-C5-C6	121(1)	C20-C21-C22	105(1)
	C5-C6-C1	118(1)	C21-C22-C23	111(1)
	C6-C1-C2	121(1)	C22-C23-C19	103(1)
	02-C7-C8	119(1)	C23-C19-C20	108(1)

.

.

CpW(NO)2(P(OPh)3)

CpW(NO)2CI

become bent, even up to 120° . As seen in Figure 2, there is little difference in the average W-N-O bond angles between $CpW(NO)_2C1 (168.7^{\circ} \text{ average}) \text{ and } CpW(NO)_2(P(OPh)_3) (170.3^{\circ} \text{ average}),$ although there is a greater variation between the two angles in Ha than in $CpW(NO)_2C1$. Differences appear more evident in the W-N-O distances, although standard deviations are too large to prevent their unequivocal interpretation. In the 19-electron Ha, the W-N distances (1.79 Å average) are shorter than those in $CpW(NO)_2C1$ (1.825 Å average), while the N-O distances in Ha (1.21 Å average) are longer than in $CpW(NO)_2C1$ (1.16 Å average). The major difference in structure is the substantially larger N-W-N angle in Ha (102.7°) as compared to that in $CpW(NO)_2C1$ (92.0°).

These structural differences in the 18- and 19-electron complexes may be readily understood in terms of a recent molecular orbital calculation²² for complexes of the type, $CpM(NO)_2X$, where M=Cr, W and X=C1, Br, I. The lowest unoccupied MO (13a'' in Fig. 2 of reference 22) of $CpCr(NO)_2C1$, which is separated from higher energy MOs and would accept the 19th electron, has 89% NO 2 π character and is antibonding between the two NO ligands and antibonding between the N and O atoms of each NO ligand²³. Thus, occupation of this level would lead to an increase in the N-W-N bond angle and an increase in the N-O bond distances, which are the observed major structural differences between IIa and $CpW(NO)_2C1$. Although 13a'' is 89% NO 2 π character²³, the lengthening of the NO bond distance lowers the energy of the 2π orbital, thereby increasing the W-N π -bonding. This effect is reflected in the shorter W-N bond distance.

Infrared and ESR spectra and electrochemistry of the $CpW(NO)_{2}(L)$ complexes The v(NO) frequencies in the infrared region of Ia $(1788, 1712 \text{ cm}^{-1})$ are 160-175 cm⁻¹ higher than those (1613,1553cm⁻¹) in the 19-electron reduced complex IIa. Similar changes in v(NO) values in complexes lb and lc are also observed (Table 2). These decreases of v(NO) values upon one-electron reduction are substantially larger than those observed (50 cm^{-1}) in the pair $Fe(NO)(das)_{2}^{+2}(1760 cm^{-1})$ and $Fe(NO)(das)_{2}^{+}(1710 cm^{-1})$, which are 17- and 18-electron species, respectively (das=o-phenylenebis dimethylarsine)²⁴. Much larger decreases (\sim 300 cm⁻¹) in ν (NO) are observed upon reduction of 18-electron complexes such as $Ru(bipy)_{2}(NO)Cl^{2+}(1940cm^{-1})$ to 19-electron $Ru(bipy)_{2}(NO)Cl^{+}$ (1640cm⁻¹).^{25,26} These IR and other studies were interpreted to indicate that the additional electron in the 19-electron ruthenium complex is primarily localized on the NO group. In the present $CpW(NO)_{2}(L)$ complexes, the 160-175cm⁻¹ shift in v(NO) suggests that the additional electron is substantially on the two NO ligands, as was also inferred from the X-ray structural results.

ESR spectra of IIa and IIb in acetone solution at -28^oC show a ten-line pattern with approximate peak intensities of 1:1:2:2:3:3:2:2:1:1: (Fig. 3). This pattern results from hyperfine
Table 2. IR and ESR data	for	I and	11
--------------------------	-----	-------	----

Complex	v(NO) ^a ,CM ⁻¹	EPR data ^b			
[CpW(N0) ₂ (P(0Ph) ₃)]PF ₆	1788(s), 1712(vs)	······································			
CpW(NO) ₂ (P(OPh) ₃)	1613(s), 1553(s)	a _N = 7.0 g, a _P = 5.0 g ^C			
[CpW(NO) ₂ (P(Ph) ₃)]PF ₆	1770(vs), 1690(s)	• •			
CpW(NO) ₂ (P(Ph) ₃)	1595(s), 1526(vs)	$a_{N} = 7.0 \text{ g}, a_{P} = 4.4 \text{ g}^{c}$			
[CpW(NO) ₂ (P(OCH ₃) ₃)]PF ₆	1777(s), 1702(vs)				
cpW(NO) ₂ P(OCH ₃) ₃	1605(s), 1533(vs)	_ d			

^aSolvent is CH₂Cl₂.

^bSolvent is acetone, temperature is -28^oC.

^CThe g value is 2.02, obtained at room temperature in the solid state with DPPH as the internal reference.

^dDecomposed too rapidly for ESR measurement.

Complexes ^b	E _{1/2} (1),V	E _{1/2} (2),V	
[CpW(NO) ₂ (P(OPh) ₃)]PF ₆	-0.09	-1.58	
[CpW(NO) ₂ (P(OCH ₃) ₃)]PF ₆	-0.16	-1.60	
[CpW(NO) ₂ (P(Ph) ₃)]PF ₆	-0.18	-1.68	

Table 3. Reduction potentials for the $[CpW(NO)_2L]PF_6$ complexes^a

^aCarried out in CH_Cl_ (0.1 M [Bu₄N]BF₄) solution using a scan rate of 20 mV/s. The potentials are measured against a SSCE reference electrode.

^bConcentrations of the complexes are 1×10^{-3} M.

coupling of the unpaired electron with the two equivalent ${}^{14}N(1=1)$ and ${}^{31}P(1=1/2)$ nuclei. Coupling constants to ${}^{14}N$ are 7.0 g in both IIa and IIb; the coupling constant to ${}^{31}P$ is 5.0 g in IIa and 4.4 g in IIb. Both compounds in the solid state have g values of 2.02 (Table 2).

ESR spectra of two other 19-electron dinitrosyl species, $Fe(CO)_2(NO)_2^{-}$ and $Co(NO)_2(CO)_2^{27,28}$ generated <u>in situ</u> by irradiation, were interpreted to indicate that the unpaired electron is largely confined to the NO ligands. It appears therefore that the addition of another electron to an 18-electron dinitrosyl complex occurs predominantly into the NO ligands.

Reduction potentials of the $CpW(NO)_2(L)^+$ complexes in CH_2Cl_2 solution were determined by cyclic voltammetry (Table 3). All complexes undergo reduction in two steps. The first wave is quasi-reversible and occurs at -0.09 to -0.18V. The small potentials for these reductions account for the easy chemical reductions of 1 to 11. The second wave is non-reversible showing no corresponding oxidation peak on the reverse scan (Figure 4). Although the product of the second reduction step is not clear, a possible species is the 20-electron anion $CpW(NO)_2(L)^-$. An attempt to prepare this anion of 11a in THF solution was made by reduction of 11a with 3% sodium-amalgam. This reaction yielded only a clear solution which showed no v(NO) absorptions. Both the first and second reduction

З

Figure 4. Cyclic voltammogram of $CpW(NO)_2(PPh_3)$ in CH_2CI_2

.

potentials become more negative with changes in L in the order: $P(0Ph)_{3}>P(0Me)_{3}>PPh_{3}$. This is also the order of decreasing II-acceptor/ σ -donor ratios for these ligands, which is consistent with the most strongly electron-withdrawing phosphorus ligands giving the most easily reduced species.

Reactions of $CpW(NO)_2(P(0Ph)_3)$ The $CpW(NO)_2(P(0Ph)_3)$ complex (IIa) is easily oxidized to the cation $CpW(NO)_2(P(0Ph)_3)^+$ (Ia) by a variety of oxidizing agents:

The purple CH_2Cl_2 solution of IIa becomes the characteristic green of Ia within one minute upon treatment with AgBF₄. Oxidation of IIa by $Ph_3C^+BF_4^-$ occurs immediately; the organic product, $Ph_3COOCPh_3$, is isolated in 13% yield, presumably formed from $Ph_3C^$ during work up of the reaction mixture in air¹³. The reaction of 11a with CH_3OSO_2F is complete within one minute and yields 1a and the reduction product ethane, which was detected by gas chromatography. An immediate reaction occurs between 11a and CF_3SO_3H to give 75% 1a; the other product is presumably H_2 . When HC1 gas is slowly bubbled into a CH_2Cl_2 solution of 11a, $CpW(NO)_2Cl$ is the only NO-containing product identified by 1R in the reaction solution. The formation of $CpW(NO)_2Cl$ presumably occurs by Cl^- substitution of $P(OPh)_3$ in 1a generated by acid oxidation. When I_2 is added to a CH_2Cl_2 solution of 11a, the purple solution gradually turns green over a 15 minute period; at this stage both 1a and $CpW(NO)_2l$ are present. On standing 15 additional minutes, only $CpW(NO)_2l$ is present in 75% yield; presumably Ia is converted to the iodo complex by substitution of the $P(OPh)_3$ in Ia.

To examine the possibility that the $CpW(NO)_2(P(OPh)_3)$ radical initiates the polymerization of styrene, IIa was added to a CH_2Cl_2 solution of styrene; no reaction occurred.

REFERENCES

- 1. Angelici, R. J. Acc. Chem. Res. 1972, 5, 335.
- 2. Connelly, N. G. Inorg. Chim. Acta Rev. 1972, 6, 47.
- 3. Griffith, W. P. Adv. Organometal. Chem. 1968, 7, 211.
- 4. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
- 5. Bottomley, F. Coord. Chem. Rev. 1978, 26, 7.
- 6. Johnson, B. F. G.; McCleverty, J. A. <u>Prog. Inorg. Chem</u>. 1966, <u>7</u>, 277.
- 7. McCleverty, J. A. Chem. Rev. 1979, 79, 53.
- 8. Bottomley, F. Acc. Chem. Res. 1978, 11, 158.
- 9. Walsh, J. L.; Bullock, R. M.; Meyer, T. J. <u>Inorg</u>. <u>Chem</u>. 1980, <u>19</u>, 865 and references therein.
- 10. Stewart, R. P.; Moore, G. T. Inorg. Chem. 1975, 14, 2699.
- Hershberger, S.; Angelici, R. J. Unpublished results, Dept. of Chem., Iowa State University, Ames, IA.
- 12. Burnner, H. J. Organomet. Chem. 1969, 16, 119.
- 13. Bachmann, W. E. J. Am. Chem. Soc. 1931, 53, 2758.
- An empirical absorption correction was made using the method described by B. A. Karcher, Ph.D. Dissertation, Iowa State University, 1981.
- 15. Jacobson, R. A. J. <u>Appl. Crystallogr</u>. 1976, <u>9</u>, 115.
- Lapp, R. L.; Jacobson, R. A. "ALLS, A Generalized Crystallographic Least Squares Program," U.S.D.O.E. Report; Iowa State University and Ames Laboratory; Ames Laboratory; Ames, Iowa, 1979.
- Gromer, D. T.; Waber, J. T. "International Tables for X-Ray Crystallography," Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp. 71-97.
- Templeton, D. H. "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham, England: 1962; Vol. III, Table 3.3.2c, pp. 215-6.

- Kochi, J. K. in "Free Radicals," J. K. Kochi, Ed.; John Wiley & Sons: New York, 1973, Vol. 11, pp. 677-692.
- 20. Greenhough, T. J.; Kolthammer, B. W. S; Legzdins, P.; Trotter, J. Acta Crystallogr. 1980, B36, 795.
- 21. Eisenberg, R.; Hendricksen, D. E. <u>Advances in Catalysis</u> 1979, <u>28</u>, 79.
- 22. Morris-Sherwood, B. J.; Kolthammer, B. W. S; Hall, M. B. <u>Inorg</u>. <u>Chem</u>. 1981, 20, 2771.
- 23. Hall, M. B. personal communication, Dept. of Chem., Texas A & M University, College Station, TX.
- 24. Nappier, T. E.; Feltham, R. D.; Enemark, J. H.; Kruse, A.; Cooke, M. <u>Inorg. Chem</u>. 1975, <u>14</u>, 806.
- 25. Callahan, R. W.; Brown, G. M.; Meyer, T. J. <u>J. Am. Chem. Soc.</u> 1975, 97, 894.
- 26. Callahan, R. W.; Meyer, T. J. Inorg. Chem. 1977, 16, 574.
- 27. Couture, C.; Morton, J. R.; Preston, K. F.; Strach, S. J. <u>J</u>. Magn. Reson. 1980, 41, 88.
- 28. Morton, J. R.; Preston, K. F.; Strach, S. J. <u>J. Phys. Chem</u>. 1980, <u>84</u>, 2478.

APPENDIX 1. FINAL POSITIONAL PARAMETERS AND THEIR

ESTIMATED STANDARD DEVIATIONS (IN PARENTHESES)^a FOR Cp(NO)₂WP(OPh)₃

Atom	X	Y	Z
W	0.5938(0)	0.3837(0)	0.5978(0)
Ρ	0.2921(4)	0.7621(2)	0.3960(2)
01	0.3164(11)	0.8282(7)	0.3157(6)
02	0.1291(11)	0.7650(7)	0.3953(6)
03	0.3220(12)	0.8259(7)	0.4775(7)
04	0.6328(14)	0.7000(8)	0.5099(9)
05	0.2052(15)	0.5200(10)	0.5199(9)
N 1	0.5362(14)	0.6679(8)	0.4685(9)
N2	0.2875(18)	0.5739(10)	0.4803(9)
C1	0.4383(17)	0.8242(9)	0.2662(11)
C2	0.4243(21)	0.8155(12)	0.1765(11)
C3	0.5399(25)	0.8104(13)	0.1275(11)
C4	0.6675(22)	0.8174(14)	0.1657(14)
C5	0.6779(21)	0.8291(13)	0.2555(14)
C6	0.5642(19)	0.8314(11)	0.3064(12)
C7	0.0543(14)	0.7092(10)	0.3363(10)
C8	0.0393(19)	0.7370(12)	0.2526(11)
C9	-0.0287(20)	0.6794(14)	0.1938(12)

^aPositional parameters are listed in fractional unit cell coordinates.

.

Atom	X	Y	Z
C10	-0.0801 (20)	0.5967(14)	0.2214(12)
C11	-0.0697(21)	0.5700(14)	0.3091(12)
C12	0.0067(16)	0.6276(12)	0.3659(10)
C13	0.2731(17)	0.9155(10)	0.4898(10)
C14	0.1688(19)	0.9229(11)	0.5513(12)
C15	0.1206(24)	1.0162(16)	0.5711(12)
C16	0.1832(25)	1.0907(12)	0.5298(14)
C17	0.2806(25)	1.0774(12)	0.4716(14)
C18	0.3333(21)	0.9873(12)	0.4515(12)
C19	0.4420(29)	0.4713(14)	0.3443(12)
C20	0.5555(25)	0.5213(17)	0.3283(15)
C21	0.5261 (26)	0.5952(14)	0.2741(14)
C22	0.3876(23)	0.5877(13)	0.2528(10)
C23	0.3275(22)	0.5132(15)	0.2972(14)

Atom	X	Y	Z
H ₂	0.3260	0.8107	0.1458
^Н 3	0.5303	0.8024	0.0596
н ₄	0.7565	0.8139	0.1272
^н 5	0.7751	0.8354	0.2865
н ₆	0.5735	0.8406	0.3758
^H 8	0.0789	0.8002	0.2309
^н 9	-0.0402	0.6995	0.1287
^H 10	-0.1329	0.5535	0.1777
H	-0.1094	0.5068	0.3308
H ₁₂	0.0182	0.6075	0.4309
H ₁₄	0.1242	0.8657	0.5816
^H 15	0.0427	1.103	0.6160
^H 16	0.1477	1.116	0.5446
H ₁₇	0.3252	1.113	0.4413
H ₁₈	0.4111	0.9780	0.4065
H ₁₉	0.4350	0.4152	0.3863
H ₂₀	0.6544	0.5061	0.3514
H ₂₁	0.5971	0.6437	0.2519
H ₂₂	0.3335	0.6356	0.2113
H ₂₃	0.2248	0.4899	0.2944

APPENDIX 2. FINAL THERMAL PARAMETERS (\times 10⁻⁴) AND THEIR ESTIMATED STANDARD DEVIATIONS (IN PARENTHESES)

FOR $C_P(NO)_2 WP(OPh)_3$

	B	^B 22	^B 33	^B 12	^B 13	^B 23
W	99(0)	25(0)	23(0)	0(0)	- 6(0)	0(0)
Ρ	89(5)	26(2)	22(1)	- 3(2)	- 9(2)	- 1(1)
01	97(15)	34(6)	34(5)	17(7)	-12(7)	6(4)
02	109(15)	36(5)	29(4)	- 3(8)	1(7)	-11(4)
03	121(17)	31 (6)	35(5)	10(8)	-20(8)	- 3(4)
04	139(20)	46(7)	76 (9)	-16(10)	-49(11)	- 4(6)
05	149(21)	75(10)	55(7)	-19(12)	6(10)	14(7)
N I	105(19)	22(6)	44(7)	- 8(9)	- 4(9)	1 (5)
N2	157(23)	38(8)	28(6)	6(12)	- 5(10)	- 4(6)
C 1	83 (22)	16(7)	41 (8)	5(10)	21(11)	7(6)
C2	150(30)	35(9)	32(8)	6(13)	-14(13)	3(7)
C3	196(36)	51(11)	28(8)	3(16)	24(15)	5(8)
С4	119(28)	51 (12)	60(12)	17(15)	14(15)	0(9)
C5	112(28)	47(10)	53(11)	- 8(14)	0(14)	6(8)
C6	82(23)	30(9)	45(9)	- 1(11)	0(12)	3(7)
C7	37(17)	30(8)	44(8)	17(10)	3(9)	-12(6)
C8	136(27)	46(9)	31 (8)	23(13)	-21(12)	6(7)
C9	103(26)	68(14)	35(9)	12(15)	- 9(12)	0(9)
C10	99(26)	80(15)	41 (9)	- 2(15)	-23(12)	- 1(9)

	 A second sec second second sec							
	^B 11	^B 22	^B 33	^B 12	^B 13	^B 23		
C11	140(30)	60(12)	46(10)	-24(16)	-22(14)	2(9)		
C ₁₂ a								
C13	63(21)	30(8)	34(7)	4(10)	-15(10)	-11(6)		
C14	101 (25)	28(8)	50(9)	19(11)	-18(13)	-11(7)		
C15	193(38)	70(15)	35(9)	3(20)	-19(15)	-12(9)		
C16	169(33)	28(10)	55(11)	8(14)	-29(16)	- 8(8)		
C17	196 (36)	34(9)	52(11)	-27(15)	- 3(17)	-11(8)		
C18	159(30)	32(9)	51 (10)	-11(14)	- 5(14)	-15(8)		
C19	212(41)	48(12)	36(9)	34(20)	4(16)	- 2(8)		
C20	127(32)	63(15)	59(13)	35(18)	-19(17)	- 5(12)		
C21	188(37)	53 (14)	51(11)	- 7(17)	7(16)	-24(10)		
C22	158(32)	52(11)	24(7)	6(15)	2(12)	- 7(7)		
C23	158(35)	71 (14)	61 (12)	-64(19)	32(17)	-37(11)		

^aDid not refine anisotropically.

APPENDIX 3. STRUCTURAL

FACTORS FOR Cp(NO) 2W(P(OPh) 3)

·

				• •		
		•				
1 1 1005 1005	E 0 450 404	2 6 710 710	E 0 461 400	0 (1001 1701	0 1 774 - 757	0 10 202 -275
1 6 1005 1005	5 3 453 434	0.0 /19 /10	5 9 451 -423			9 10 362 -375
4 6 452 469	6 3 390 358				2 1 221 -244	0 11 /01 -8/4
	8 3 448 -322	4 0 1353-1355	7 10 289 -405		A 1 1000 1001	0 12 652 672
4 7 252 200			10 420 -519	5 4 477 -509	5 1 540 470	2 12 450 488
1 7 353 380	E 4 423 -417	0 1 1 50 - 1 609	5 10 674 690	5 6 4/7 - 508	4 1 305 213	3 12 585 612
2 7 254 -222	0 4 545 -417	2 1 274 - 317	7 10 417 374	10 6 445 362	8 1 681 -689	6 12 560 -587
A 7 445 427	0 5 1290-1240	4 1 696 745	0 11 1066-1015	1 7 851 857	10 1 475 -377	9 12 353 -289
8 7 579 -626	1 5 346 323	5 1 394 -458	2 11 546 -532	2 7 446 -510	1 2 469 457	1 13 1125 1176
0 8 1274 1241	2 5 366 377	6 1 698 694	4 11 451 413	5 7 667 -687	5 2 976 1019	5 13 475 ~450
3 8 319 362	3 5 469 486	10 1 360 -272	6 11 675 679	8 7 380 310	6 2 398 387	7 13 508 -492
4 8 800 -823	4 5 938 943	0 2 417 -410	2 12 522 610	9 7 425 459	0 3 495 -500	0 14 579 622
6 8 573 -612	5 5 322 -317	1 2 1945-1934	4 12 421 526	0 8 335 322	2 3 756 801	2 14 523 568
7 8 321 -231	6 5 424 360	5 2 1222 1261	8 12 433 -316	2 8 285 301	3 3 331 331	3 14 460 -514
1 9 905 912	8 5 409 -350	6 2 384 330	1 13 422 464	3 8 539 -659	4 3 1519 1542	6 14 370 -381
5 9 787 -760	0 6 845 839	11 2 367 -408	3 13 686 778	4 8 437 -468	5 3 711 -702	0 15 492 499
0 10 427 407	1 6 312 -317	0 3 1173-1094	7 13 401 -306	7 8 717 635	8 3 565 -517	2 15 420 ~460
1 10 549 -620	2 6 1061 1075	2 3 1244-1238	1 14 545 622	0 9 572 -552		
3 10 692 -806	3 6 370 481	4 3 545 566	2 14 432 450	5 9 382 256		0 10 442 -443
4 10 343 -245	6 6 722 - 784	5 3 361 342	4 14 325 343		4 4 287 -207 5 A AQA AAD	5 14 417
7 10 443 371			0 15 035 854	0 10 040 -933	6 A 1347-1372	1 17 539 -578
2 11 /01 -010	0 / 368 373	7 3 323 -256 0 4 797 -759	A 15 355 -373	1 10 438 -447	8 4 357 -343	0 18 426 -430
4 11 021 -047 6 11 425 393	27 333 -33737 492 447		6 15 521 -516	3 10 448 -531	3 5 698 709	0 10 100
8 11 439 400	4 7 440 -436	2 4 1087 1122	0.00 000 000	4 10 733 763	4 5 950 -986	L = ~5
0 12 590 -608	5 7 428 -371	3 4 258 -272	L = -7	6 10 517 506	5 5 738 -735	H K FO FC
1 12 489 -504	7 7 539 -655	4 4 1297 1347	H K FO FC	7 10 444 405	7 5 646 -783	1 0 804 -864
3 12 423 -420	2 8 451 459	5 4 325 358	2-12 420 -288	1 11 619 -698	8 5 311 356	3 0 465 439
4 12 494 484	5 8 761 -662	6 4 384 -421	2 -6 291 -233	3 11 433 497	11 5 343 322	5 0 1456 1467
6 12 413 351	6 8 393 -430	8 4 669 -642	0 -3 262 198	6 11 378 -265	0 6 1210 1177	7 0 289 669
1 13 624 -654	9 8 563 488	1 5 457 434	1 -2 277 302	9 11 382 -287	1 6 260 -287	0 1 1519-1490
3 13 324 326	0 9 785 782	2 5 563 583	1 0 2263-2168	0 12 968 -958	2 6 556 558	1 1 1598 158/
5 13 598 512	1 9 657 -672	4 5 279 -240	1 1 642 -638	1 12 601 673	4 6 412 -437	4 1 870 740 E 1 957 949
0 14 542 -576	4 9 872 -861	5 5 516 567	4 1 3/4 -390	3 12 443 457	5 6 717 -740	5 I 237 243
1 14 495 519	8 9 411 331			4 12 418 460	0 7 1539 1461	10 1 463 -363
0 14 443 434	1 10 274 214	0 5 577 -453	9 1 490 455	7 12 519 -450	2 7 798 -849	0 2 555 516
0 10 443 434	3 10 344 -404	0 6 649 -593	0 2 2129-2033	2 13 811 823	4 7 889 -951	1 2 410 ~361
1 = -9	5 10 534 -500	1 6 1447 1447	2 2 328 338	8 13 513 -468	8 7 508 538	4 2 880 935
H K FO FC	6 10 622 628	2 6 419 455	4 2 1507 1548	0 14 699 688	0 8 1974-1899	5 2 346 378
2-13 395 317	8 10 357 281	5 6 985 -950	6 2 712 750	1 14 664 649	1 8 331 160	6 2 599 -606
0 -4 285 259	3 11 552 -578	7 6 555 -634	8 2 305 -294	4 14 406 -491	2 8 934-1011	8 2 782 -775
1 0 707 633	5 11 522 429	11 6 408 326	10 2 643 -536	6 14 378 -282	3 8 427 -427	0 3 2229 2131
5 0 701 -705	7 11 573 488	0 7 1517 1520	1 3 1197-1170	7 14 386 -350	4 8 505 539	2 3 259 266
0 1 1050 1047	0 12 582 -607	1 7 676 -660	2 3 1076 1083	1 15 339 396		6 3 35 <u>4</u> 363
1 1 1436-1359	2 12 469 -459	2 / 79/ 848	5 3 1246 1366	3 13 3// 402 5 15 /04 -650	7 0 2677 700	6 3 A30 444
2 I 577 -580 A 1 140E-1100	3 12 458 494	J / 436 -569 A 7 734 -750	0 J 427 -444 0 7 A17 _747	0 16 A57 AAD	A B B 760 720	7 3 334 -609
8 1 220 220 9 1 1122-1103	J 12 613 377	+ / /20 -/33	0 3 390 -410	4 16 440 -393	0 9 489 -472	9 3 388 -310
10 1 479 349	4 13 AL7 ANA	0 8 353 383	0 4 408 -418	2 17 536 -551	2 9 367 397	0 4 268 209
0 2 1198-1149	0 14 478 458	1 8 530 554	2 4 355 -319		3 9 466 -597	1 4 1455 1507
1 2 474 86	2 14 469 512	2 8 1001-1054	5 4 414 -408	L = -6	5 9 893 849	3 4 329 -417
2 2 1363-1385	3 14 328 345	3 8 281 320	7 4 318 -804	H K FO FC	7 9 626 643	4 4 367 333
6 2 958 957	1 15 633 709	4 B 471 -445	0 5 1162 1147	2-16 352 -341	0 10 418 -393	5 4 1776-1844
8 2 488 524	2 16 332 374	5 8 561 -533	1 5 447 445	3-11 301 276	2 10 516 -565	8 4 334 -346
0 3 399 -460		8 8 582 570	4 5 418 378	0 0 1346-1344	3 10 825 971	11 4 402 379
1 3 1093-1105	L = -8	10 8 354 230	5 5 898 -834	6 0 1048 1068	5 10 814 739	
2 3 253 236	H K FD FC	0 9 663 -630	6 5 760 -756	8 0 381 341	6 10 508 489	
4 3 866 921	3-11 327 230	1 9 362 -340	8 5 688 -702	10 0 499 -448	/ 10 430 -353	4 3 1200-1304

4 5 693 -894 1 = -4 0 0 425 441 6 2 1372-1424 5 11 965-1059 7 5 835 836 4 11 115-1107 10 5 407 400 1 - 907 -52 2 9 435 -557 10 2 507 431 10 2 71 827 10 3 375 373 0 11 5 561 577 12 6 4334 400 1 - 907 -52 2 9 435 -557 10 2 507 431 0 12 741 827 10 3 375 373 0 11 5 561 577 14 6 71 1413 4 0 0 677 1691 0 1 10 427 -439 1 3 287 737 1 4 247 -448 3 11 2 103 -464 4 6 771 1413 4 0 0 677 1691 0 1 10 653 769 7 3 1307 1372 3 12 103 -464 3 11 2 103 -464 6 7 731 1695 1 0 653 769 7 3 1307 1372 4 12 547 -441 1 4 47 -448 3 11 2 407 -441 6 7 731 1695 1 1 0 837 1477 1 3 387 1477 1 3 387 1477 4 12 547 -441 1 14 547 -448 3 11 2 407 -441 7 7 3 11 695 1 1 0 837 1477 1 1 3 387 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 3 247 1477 1 1 4 244 1474 1 1							
1 5 892 893 1 <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th>				•			
$ \begin{array}{c} 5 & 993 - 994 \\ 7 & 7 & 93 & 993 - 994 \\ 7 & 7 & 94 & 92 & 92 & 22 \\ 7 & 95 & 222 & 2 & 932 & 22 \\ 7 & 91 & 222 & 2 & 932 & 22 \\ 7 & 91 & 222 & 2 & 932 & 22 \\ 7 & 91 & 222 & 2 & 932 & 22 \\ 7 & 91 & 222 & 2 & 932 & 22 \\ 7 & 91 & 22 & 2 & 932 & 22 \\ 7 & 91 & 22 & 91 & 10 & 2 & 507 & 421 \\ 7 & 10 & 11 & 210 & 420 & 10 & 20 \\ 7 & 11 & 1$			· .				
$ \begin{array}{c} 1 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 5 & 607 - 604 \\ 7 & 60 & 701 - 603 \\ 7 & 60 & 701 - 603 \\ 7 & 60 & 701 - 603 \\ 8 & 7 & 701 & 701 \\ 7 & 6 & 711 & 60 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 60 & 701 - 701 \\ 7 & 701 & 607 \\ 7 & 701 & 607 \\ 7 & 701 & 607 \\ 7 & 701 & 701 \\ 7 & 701 & 607 \\ 7 & 701 & 701 \\ $					-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			•		•		
	6 5 $893 - 894$ L 7 5 $417 + 433$ H K 10 5 $437 + 400$ I -33 2 6 $1335 - 1492$ 0 0 4 6 $771 - 816$ 4 0 5 6 $311 - 313$ 6 0 6 6 $342 + 461$ 8 0 0 7 $1011 - 1054$ 0 1 2 7 $311 - 312$ 1 1 4 7 $355 - 373$ 5 1 7 7 $461 + 447$ 8 1 7 7 $461 + 447$ 8 1 9 7 $424 + 412$ 9 1 9 7 $424 + 412$ 9 1 9 7 $8696 -709$ 5 2 7 $8 696 -709$ 5 3 1 10 $930 -947$ 5 3 1 10 $932 - 387$ 6 3 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 3 B25 B26 9 3 376 390 10 3 375 373 12 3 367 223 0 4 523 -426 1 4 647 -645 3 4 537 -529 4 1149-1194 5 4 279 5 4 279 -222 6 4 1096 1135 7 3 306 -364 8 4 779 760 0 0 5 622 -684 1 5 1371-1529 2 5 2 5 228 -293 4 5 4 5 419 432 6 5 291 25 5 852 856 9 5 389 420 10 5 376 -322 0 6 633 -522 1 6 510 479 <	4 11 112-1197 6 11 516 -607 0 12 321 -281 1 12 565 577 2 12 1020-1024 3 12 433 -476 4 12 387 -444 5 12 504 -562 6 12 607 573 8 12 466 418 1 3 1012-1064 3 13 790 -817 7 13 629 603 1 14 373 -385 2 14 720 -727 3 14 408 459 5 14 426 473 6 14 356 195 7 14 349 225 8 14 357 265 0 15 856 -863 4 15 570 580 6 15 412 357 1 16 379 -419 2 16 537 507 1 17 519 504 3 17 636 678 2 18 601 559 L = -1 H K FO FC 3 -6 242 -254 3 0 318 375 5 0 914 -957 7 0 1388-1457 11 0 501 424 0 1 1914 1538 1 1 627 -558 5 1 482 -474 9 1 606 567 0 2 1864 1696 4 2 1759-1952 5 2 616 -638 8 2 1079 1082 10 3 1036-1036 6 3 932 933 7 3 634 611 9 356 478 2 13 360 -218 0 4 1933 1820 1 4 1721-1978 4 396 -419	43

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 6 231 243 6 6 633 7 6 922 -888 9 6 591 -555 1 7 690 702 2 7 1689 1770 3 7 265 205 4 7 987 974 5 7 513 -527 7 7 474 -507 8 7 991 -933 0 8 1186 1222 1 8 323 296 2 8 563 561 3 8 873 916 4 8 955 -926 6 8 921 -914 10 8 505 521 1 9 1629 1651 2 9 347 -373 3 9 502 -543 1 9 362 -341 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		L = 2 H K F0 FC 2 0 4920-4470 4 0 721 -807 8 0 1281 1303 10 0 558 536 1 1 216 -167 2 1 600 -627 3 1 1767-1816 4 1 831 823 5 1 839 -862 6 1 678 723 7 1 632 615 8 1 343 353 9 1 494 465 10 1 409 -383 1 2 2799-2392 3 2 401 -358 4 2 342 -325 5 2 1261 1302 6 2 332 276 7 2 943 988 11 2 460 -436 1 3 1369-1262 2 3 1624-1646 3 3 1299 1230 7 3 343 -370 9 3 314 -276 10 3 473 -425 12 3 388 -338 1 4 1087-1088 2 4 1500 1517 4 4 1591 1589 6 4 346 -358 6 4 761 -736 10 4 387 -370 1 5 1348 1289 2 5 997 1035 3 5 1753 1781 4 5 631 -589 5 5 403 376 6 5 785 -763 7 5 386 -416 9 5 664 -606 1 6 1875 1907 2 6 969 981 3 6 276 232 5 6 1401-1375 6 6 301 269	5 7 $363 - 309$ 6 7 $840 - 810$ 7 7 $321 254$ 9 7 $434 356$ 10 7 $553 554$ 1 8 $708 740$ 2 8 $1012 - 1022$ 4 8 $1270 - 1260$ 5 8 $619 - 402$ 8 8 $749 702$ 10 8 $345 287$ 1 9 $577 - 570$ 2 9 $433 - 439$ 3 9 $1551 - 1560$ 5 9 $741 - 696$ 6 9 $296 302$ 7 9 $568 519$ 9 9 $599 607$ 1 10 $1193 - 1205$ 2 10 $670 - 711$ 4 10 $686 - 674$ 5 10 $1138 1108$ 7 10 $511 509$ 2 11 $985 - 995$ 4 11 $346 364$ 6 11 $898 852$ 1 12 $884 - 892$ 2 12 $365 397$ 4 12 $1070 1112$ 7 12 $351 434$ 8 $12 499 - 400$ 1 13 $469 467$ 3 13 $1078 1052$ 5 13 $538 508$ 7 13 $379 - 387$ 9 13 $514 - 492$ 1 14 $808 785$ 2 14 $534 523$ 4 14 $479 478$ 5 14 $340 - 369$ 7 14 $408 - 408$ 2 15 $507 498$ 4 15 $407 - 346$ 6 15 $622 - 623$ 1 16 $416 - 417$ 4 16 $422 - 393$ 3 17 $636 - 604$ L = 3 H K FC FC 4 - 12 $318 - 304$ 1 $0 2751 - 2295$ 3 0 $1693 - 1706$	μμ
2 12 354 -296 3 12 537 -493 4 12 600 -647 5 12 661 686 7 12 342 350 8 12 424 420 0 13 1332-1358 2 13 815 -779 6 13 580 569 8 13 406 310 0 14 554 -551	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 14 969 -996 1 14 567 582 2 14 331 -309 3 14 594 636 4 14 404 404 6 14 462 417 2 15 849 855 4 15 618 609 0 16 582 578 3 16 654 619 4 16 383 -298	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 15 507 547 7 15 604 -585 2 16 623 632 3 16 475 -462 5 16 439 -333 6 16 463 -482 4 17 664 -598 2 18 427 -379 3 18 429 -346	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L = 3 $H K F0 FC$ $4-12 318 -304$ $1 0 2751 - 2295$ $3 0 1693 - 1706$ $7 0 1316 1355$ $9 0 671 681$ $11 0 348 - 360$ $1 1 721 - 677$ $2 1 1239 - 1269$	

			,		4 ³	
					•	
3 1 748 740	6 9 614 625	1 3 1053 995	9 12 368 -325	10 5 495 470	L = 6	6 8 697 683
4 1 930 -959	8 9 602 598	2 3 301 373	1 13 1153 1122	1 6 946 942	H K FO FC	7 8 460 414
5 1 726 742	1 10 316 -316	4 3 1755 1752	3 13 320 311		4-11 353 -297	8 8 398 -403
7 1 680 655	3 10 818 -829	7 3 635 -655	7 13 689 -732	7 6 442 -411	4 0 2680 2658	1 9 811 -794
B 1 829 786	4 10 677 669	B 3 506 -441	2 14 436 422	8 6 905 851	6 0 1014 1038	2 9 401 393
9 1 338 -367	6 10 604 584	10 3 504 -461	3 14 564 -592	1 7 1474-1426	8 0 649 -679	3 9 757 738
3 2 389 -405	1 11 842 -801	2 4 2089 2044	2 15 449 -439	3 7 1120-1127	1 1 926 -891	9 9 458 -454
4 2 1626 1617	2 11 648 649	3 4 324 329	4 15 672 ~680	4 7 610 578	2 1 1287 1297	1 10 793 761
5. 2 227 -194	3 11 597 594	6 4 1338-1291	2 16 467 -406.	7 7 731 652	3 1 1167 1147	3 10 1045 1039 A 10 769 784
	1 12 550 519	12 4 483 414	4 16 315 8	1 8 1385-1389	5 1 1215 1201	5 10 356 -393
1 3 1879-1757	3 12 942 965	1 5 2085 2027	5 16 430 -399	2 8 715 -726	6 1 717 -724	7 10 661 -586
2 3 1272 1331	6 12 482 482	3 5 951 918	1 17 701 ~689	3 8 377 361	8 1 516 -500	1 11 283 136
4 3 804 794	2 13 1341 1317	5 5 833 -856	L = 5	5 8 783 762	1 2 2083 1942	6 11 752 -734
5 3 1612 1604	4 13 310 359	7 5 847 -830	H K FO FC	6 8 425 403	2 2 563 -558	8 11 430 -407
6 3 691 -684	6 13 456 -374	2 6 377 387		7 8 538 605	3 2 1223 1204	1 12 796 800
9 3 385 -381	1 14 689 668	4 6 589 -571	5 0 1517 1515	1 9 444 444	5 2 779 -785	3 12 336 358
11 3 391 -358	3 14 561 511	5 6 1106-1078	7 0 1028 1077	2.9 873 -864	6 2 291 -348	4 12 506 -506
1 4 1360 1313 3 A 1993 1979	4 14 506 -526 7 14 557 -498	7 6 389 322	9 0 532 -509	3 9 282 254	9 2 397 -410	1 13 306 319
5 4 306 -293	1 15 550 538	9 6 716 727	1 1 985 920	6 9 898 910	11 2 357 308	3 13 594 -571
6 4 366 284	3 15 416 -347	1 7 B09 -797	2 1 419 -438	10 9 367 -373	1 3 868 822	5 13 617 -527
7 4 977 -971 9 4 543 -535	5 15 686 -663	2 7 1053-1088	3 1 1518 1483 A 1 752 748	1 10 649 -639	2 3 18/5 1843	3 14 364 -377
1 5 352 405	3 16 463 -387	6 7 595 ~629	5 1 240 230	4 10 1014 1045	4 3 672 651	4 14 495 -503
2 5 1499 1540	4 16 628 -609	7 7 539 543	6 1 976 1013	5 10 788 734	5 3 621 -629	6 14 391 -379
3 5 340 -350 4 5 639 655	2 17 742 -709	8 7 505 469 10 7 478 498	7 1 771 -764 9 1 403 -426	8 10 366 -379	3 4 887 828	2 15 732 -745
5 5 1266-1246	1 18 407 -411	2 8 1045-1053	10 1 460 -445	1 11 591 544	4 4 1972-1878	6 15 446 404
6 5 594 -580	3 18 525 -421	3 8 625 -640	1 2 484 -420	2 11 369 420	6 4 613 -610	
9 5 313 208	L = 4	5 8 547 -477 6 8 844 794	4 2 1230 1235	7 11 586 -575	8 4 344 350	3 17 459 442
1 6 866 823	H K FD FC	8 8 533 479	5 2 381 355	9 11 396 -361	10 4 539 492	
2 6 250 269	3-11 295 264	1 9 1303-1305	6 2 334 -317	1 12 871 896		. L = 7 H K ED EC
3 6 466 427 4 6 1500-1463	2 0 3584-3341	3 9 934 -919	1 3 289 -232	4 12 304 270	3 5 1034-1039	1 0 311 249
6 6 1102-1053	6 0 1130 1156	4 9 337 316	2 3 611 652	5 12 780 -780	4 5 480 -495	3 0 1789 1735
8 6 300 257 10 6 634 582	B 0 660 635	5 9 827 778	3 3 1957 1899	8 12 444 -430	5 5 1262-1266	7 0 495 -481
1 7 995 1038	1 1 1807-1705	7 9 791 748	6 3 824 -788	4 13 563 -565	9 5 532 543	9 0 615 -643
2 7 581607	2 1 812 796	1 10 351 -351	7 3 690 -680	6 13 606 -610	1 6 1503-1490	1 1 1269 1239
3 7 954 -940 5 7 1299-1245	3 1 690 -712	2 10 977-1012	9 3 473 -521	1 14 462 484	4 6 290 -247	3 1 424 401
7 7 524 -518	5 1 1005 982	5 10 727 722	1 4 1776 1747	4 14 395 -411	5 6 326 356	4 1 882 933
8 7 365 316	6 1 411 395	6 10 516 495	3 4 355 -321	5 14 476 -451	7 6 1032 1054	5 1 817 -814
9 / 636 570 11 7 402 344	7 1 1036 1051 B 1 662 -631	7 10 506 ~440	4 4 564 535 5 4 1932-1898	1 15 570 -541 3 15 725 -707	2 7 1365-1373	B 1 554 -594
1 8 1741-1718	10 1 435 -363	2 11 514 537	7 4 503 -512	7 15 372 419	3 7 543 517	9 1 309 213
3 8 1091-1075	1 2 457 -416	4 11 1204 1193	8 4 376 -329	1 16 502 -509	5 7 297 288	2 2 1430 1476
4 8 651 -621 7 8 947 911	2 2 12/3-1265 3 2 2277 2241	8 11 521 -476 1 12 294 272	2 5 655 649	2 16 476 -467 5 16 435 361	8 7 846 834	4 2 930 -928
9 8 424 443	4 2 526 518	2 12 894 891	3 5 714 -727	2 17 372 -364	1 8 392 -389	6 2 1173-1169
1 9 371 -372	5 2 1416 1377	3 12 604 621	4 5 958 -956	4 17 544 496	2 8 552 506	10 2 346 467 1 3 1656 1605
≥ 7 164471664 4 7 889 -908	9 2 680 -658	5 12 445 306 6 12 727 -667	o 0 1190-1190 7 5 527 538		4 8 943 914	2 3 1336-1259

.

3 7 595 599	9 13 459 490	6 7 718 745	7 4 720 754	4 1 659 -638	5 13 571 533	5 10 353 -430
A 2 900 -804	7 14 205 -745	1 8 762 -719	1 5 436 -461	5 1 737 -797	3 14 450 416	6 10 434 501
		2 0 1400 1407	7 5 1428-1402	4 1 255 -251	4 14 391 277	8 10 390 302
3 3 1346~1351	3 14 365 -383	2 8 1478 1482	2 5 1437-1403	7 1 274 - 244	7 15 724 660	1 11 665 -662
/ 3 4/9 -4/4	6 14 471 485	4 8 367 367	3 5 653 628	7 1 374 -300	4 15 724 000	2 11 775 -771
8 3 514 456	1 15 776 -787	5 8 637 645	5 5 633 574	B 1 536 571	4 15 436 421	3 11 /23 -/31
1 4 339 380	5 15 442 398	6 8 321 -335	6 5 796 816	1 2 535 -606		
2 4 406 375	2 16 460 -397	8 8 725 -727	8 5 591 608	2 2 441 410	L = 11	
3 4 1681~1674	3 16 473 380	1 9 662 625	1 6 523 -546	3 2 1496-1484	H K FO FC	2 12 534 ~553
5 4 880 -871		3 9 1098 1106	2 6 641 639	5 2 477 -442	3-10 356 -328	3 12 427 431
7 4 661 663	L = 8	7 9 671 703	4 6 1136 1124	7 2 793 788	3 -6 326 217	5 12 661 623
9 4 626 614	H K FD FC	1 10 1053 1077	6 6 338 395	9 2 587 611	1 0 330 330	4 13 578 611
1 5 731 -725	3-12 309 273	2 10 596 629	7 6 466 449	1 3 858 -844	3 0 586 -621	6 13 368 472
2 5 1006-1001	2-11 355 -324	3 10 349 -283	8 6 541 -518	2 3 1114-1117	5 0 551 -499	2 14 420 420
3 5 300 -266	2 0 1348 1324	4 10 395 385	10 6 362 -368	4 3 1028-1065	9 0 676 663	1 15 622 569
4 5 1104-1112	4 0 1389 1384	5 10 1031 -977	2 7 434 415	5 3 499 540	1 1 1208-1178	3 15 427 392
5 5 471 482	4 0 435 -554	4 11 915 -891	3 7 832 829	8 3 422 481	3 1 461 -466	
J J 8/1 882	B 0 754 -740	4 11 577 -500	5 7 541 492	1 4 529 -520	4 1 1127-1129	L = 12
			4 7 204 -422	2 4 1048-1041	6 1 461 -519	H K FO FC
	1 1 1333 1294		0 7 400 -500	A A 759 799	7 1 704 702	2 0 1001-1048
2 6 1050-1037	3 1 1214 1188	2 12 728 -718	403 -330	4 4 040 007	1 2 224 222	A 0 728 -772
3 6 370 -383	4 1 823 -831	4 12 337 -264	1 8 1224 1233		2 2 1602-1500	4 0 393 -493
4 6 490 460	6 1 782 -796	5 12 406 -375	3 8 575 552	1 5 884 -902	2 2 1582-1580	
6 6 1099 1103	7 1 695 -744	8 12 357 349	4 8 663 636	2 5 727 748	4 2 /26 -/69	8 0 747 775
8 6 399 348	9 1 409 -420	1 13 757 -786	5 8 500 -441	4 5 521 533	5 2 429 -444	10 0 357 273
9 6 405 358	10 1 443 452	3 13 657 -640	7 8 756 -807	5 5 941 914	6 2 754 775	2 1 312 -322
10 6 420 -383	1 2 1277 1269	7 13 535 501	2 9 1126 1148	6 5 356 -379	8 2 644 637	3 1 799 -837
1 7 1710-1710	3 2 700 -682	1 14 415 -411	6 9 766 -777	7 5 564 612	1 3 816 -793	5 1 539 -576
2 7 527 503	4 2 335 375	2 14 571 -557	1 10 649 629	1 6 652 715	3 3 843 -850	6 1 526 584
4 7 510 527	5 2 1434-1475	5 14 463 452	2 10 564 -578	3 6 1196 1183	4 3 1165 1147	8 1 409 404
5 7 647 690	4 2 550 -572	4 15 483 521	3 10 344 377	6 6 387 397	5 3 348 356	1 2 1363-1367
7 7 810 803	7 2 425 -401	2 14 A92 A79	4 10 1054-1066	7 6 562 -570	6 3 316 441	3 2 523 -519
7 7 710 703	0 0 454 504		1 11 252 327	9 6 477 -469	7 3 540 591	4 2 330 -320
8 / 348 -240	7 2 438 328	1 17 336 331	2 11 042 -045	1 7 503 471	1 4 850 -844	5 2 768 829
1 8 632 623	1 3 908 -883		5 11 642 -645	2 7 040 057	7 4 794 801	7 2 618 614
2 8 /32 -/62	2 3 396 371	L = 9	5 11 656 -640		E 4 1070 1094	2 3 1034-1044
3 8 1221 1206	3 3 786 -745	H K FU FC	6 11 406 283	4 / 812 811	0 4 205 -429	2 3 804 834
5 8 493 500	4 3 1063-1064	1 0 2136 2047	1 12 762 -724	5 / 323 -30/	7 4 365 -428	A 2 200 273
6 8 540 546	6 3 610 -672	3 0 260 313	2 12 381 -322	8 / 652 -654	1 5 4/8 43/	A 3 377 373
7 8 440 -422	7 3 384 469	5 0 767 -814	3 12 446 -431	2 8 537 492	3 5 590 606	3 3 438 478
9 8 635 -643	1 4 285 256	7 0 1085-1112	4 12 355 -334	3 8 438 434	4 5 831 820	6 3 /6/ 810
1 9 287 306	2 4 1642-1649	11 0 374 348	5 12 405 365	4 8 566 -574	5 5 380 -417	7 3 3/8 -3/1
2 9 818 831	4 4 988 -998	2 1 1008 994	7 12 447 417	6 8 753 -727	6 5 555 584	2 4 1005 1031
4 9 1291 1257	6 4 811 843	3 1 885 -894	2 13 641 -651	1 9 1182 1177	10 5 444 -467	4 4 1148 1207
7 9 366 -275	8 4 536 577	5 1 837 -849	6 13 609 593	2 9 366 -377	2 6 1207 1206	8 4 412 -491
8 9 595 -536	0 5 330 -360	6 1 516 508	1 14 634 -649	5 9 974 -967	4 6 303 278	2 5 533 591
10 9 412 -281	1 5 1025-1008	8 1 347 ~284	4 14 416 440	7 9 421 -375	5 6 334 365	3 5 797 804
2 10 946 956	2 5 377 -358	9 1 582 582	3 15 662 633	1 10 327 -334	6 6 562 -592	5 5 467 503
3 10 551 530	3 5 1424-1406	2 2 705 -706	5 15 451 471	2 10 344 348	8 6 487 -549	9 5 421 -474
4 10 724 -440	4 5 075 001	A 2 1499-1490	0 16 383 -277	3 10 820 -839	1 7 1065 1066	1 6 1127 1099
		9 2 445 490	1 14 432 419	A 10 376 -344	3 7 846 861	4 6 306 358
8 10 336 -144			1 10 432 417	4 10 431 -396	7 7 740 -768	5 6 543 -606
			1 - 10	7 10 463 395	1 8 478 511	6 6 395 315
3 11 287 299	y 5 335 413	2 3 1094-1109		1 11 224 -244	3 9 440 474	7 6 598 -630
4 11 411 -460	1 6 1064-1051	3 3 1132-1117		1 11 JET -200	2 0 557 -494	2 7 628 654
5 11 875 -823	2 6 323 -339	5 3 962 -950	1-14 344 -291			3 7 336 -328
7 11 523 -502	3 6 546 547	6 3 498 482	0 -3 290 -167	4 11 /50 -812	5 8 847 -845	A 7 AND _A17
3 12 628 -610	5 6 909 9 03	7 3 373 417	2 0 280 296	8 11 409 437	y 8 481 424	4 7 704 -91A
4 12 307 -340	7 6 387 345	9 3 454 452	4 0 633 -635	2 12 381 -385	1 9 420 -468	
6 12 344 -369	9 6 499 -456	1 4 1637-1603	6 0 1305-1343	3 12 551 -547	4 9 940 -907	1 8 3/4 381
0 13 376 327	1 7 606 615	3 4 1073-1049	10 0 444 513	4 12 512 523	6 9 341 -381	2 8 471 -233
2 13 702 -702	3 7 538 530	4 4 331 -281	1 1 1068 1030	6 12 384 416	7 9 376 259	4 8 /52 -810
4 13 826 -797	4 7 634 660	5 4 872 891	2 1 1065-1051	1 13 741 -743	2 10 811 -834	5 8 355 -264

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	
5 1 385 331 6 1 463 507	5 3 396 -374 2 4 988 1051	4 10 553 547 5 10 398 348	4 0 378 397 1 1 422 365		4
7 1 374 405	6 4 549 -663	3 11 650 674	3 1 568 538		7
	0 5 388 343	1 12 413 42/	1 2 554 642		
4 2 942 972	3 5 347 349	L = 16	5 2 574 -539		
6 2 780 822 1 3 1051-1074	4 5 567 -559	H K FU FC 2 -2 332 -142	3 3 353 -340		
2 3 570 624	3 6 618 -643	4 0 616 633	4 3 458 -469		
4 3 424 445	5 6 654 -634	6 0 551 553	2 4 601 -658		
5 3 854 910	1 7 398 -381	0 1 368 398	4 4 404 -440		
3 4 1084 1140	4 7 611 -672	2 1 561 569	3 5 496 -552		
7 4 470 -568	7 7 348 280	5 1 400 474	1 6 515 -505		
9 4 387 -406	2 8 597 -607	1 2 783 826	1 8 346 -298		
2 5 980 992	3 8 393 -377 6 8 400 521	7 2 404 -526	L = 19		
4 5 589 580	1 9 838 -824	1 3 332 369	H K FO FC		
5 5 344 -452	3 9 476 -461	2 3 771 792	1 0 524 653		
8 5 474 -505	5 9 394 373	6 3 368 -454 4 4 788 -848	3 0 402 438 5 1 470 498		
3 6 310 269	3 10 555 548	1 5 331 241	3 1 342 -315		
4 6 687 -701	5 10 516 480	2 5 460 -462	3 3 344 -408		
6 6 657 -693	6 10 358 327	3 5 426 -457	1 4 440 -491		
5 7 813 -768	4 11 618 698 2 12 551 529	0 6 363 360	2 3 368 -433		
1 8 591 -596	1 13 638 626	1 6 670 -696			
3 8 609 -654		3 6 542 -574			
7 8 557 551 5 6 610 - 634	L = 15 U K EO EC				
4 9 439 -442	1-10 351 -322	1 9 391 -405			
3 10 484 -493	1 -7 343 325	3 9 332 365			

.

SECTION II. THE CHEMISTRY OF THIOMETHOXYL AND AMINO SECONDARY CARBENE COMPLEXES OF IRON .

INTRODUCTION

In view of the projected shortage of crude oil, which is currently the primary feed stock for various organic compounds, interest in the Fischer-Tropsch reaction as an alternative source of organics has revived. The Fischer-Tropsch reaction converts a mixture of H_2 and CO gases, when passed through a hot bed of catalyst, composed of transition metals on a solid support, under high pressure conditions, into hydrocarbons and oxygenated organic molecules (Eqn. 1).

$$CO + H_2 \xrightarrow{\text{metal}} \Delta$$
 alkanes, alkenes, alcohols ... (1)

The mechanism(s) of this reaction remains elusive but most of the transformations are believed to take place on the activated metal surfaces; metal coordinated C^1 , CHO^2 , CH_2 , $CHOH^3$, CH_2OH are among the plausible transient species $^{4-6}$. Current advances in the syntheses of these organometallic intermediates undoubtedly would shed some light on the mystery of this catalytic reaction.

Most recently, the chemistry of isolated primary carbone complexes has been explored. Schrock and coworkers showed that Cp_2 TaMe(CH₂)⁷ disproportionates thermally to give the metallacyclopropane (Eqn. 2). Brookhart et al.⁸, demonstrated that

CpdppeFeCH $_2^+$, which only can be generated in-situ, transfers the methylene molety to olefins affording cyclopropanated products (Eqn. 3).

$$2CP_2 TaCH_3(CH_2) \xrightarrow{\Delta} CP_2 TaCH_2 CH_2$$
 (2)

$$Cp(dppe)FeCH_2OCH_3 \xrightarrow{H^+} [Cp(dppe)FeCH_2]^+ (3)$$

$$\bigvee_{i} Cp(dppe)Fe(n^2-C_2H_4)^+$$

Due to its inherently unstable nature, the iron complex decomposes to the n^2 olefin complex, $Cp(dppe)Fe(C_2H_4)^+$ (Eqn. 3). The reaction turns out to be a general pathway for the decomposition of other methylene compounds. Thus, $CpM(CO)_2(PPh_3)(C_2H_4)^+$ (M = W,Mo) is formed when the methylene complex is heated⁹ (Eqn. 4).

$$M'CH_2^+ - \Delta \to M'(C_2H_4)^+$$
 (4)

$$M' = CpMo(CO)_2PPh_3, CpW(CO)_2PPh_3$$

To enhance the stability of methylene complexes, CO ligands are commonly replaced with electron-donating ligands, such as tertiary phosphines. Alternatively, replacement of one of the carbene hydrogen atoms with an electron-donating group results in a secondary carbene complex which is often strikingly more stable. Thus far, amino¹⁰⁻²², oxyl^{19,23-25}, thioalkoxyl^{19,26-28}, silyl²⁹⁻³¹, alkyl^{30,32-33,34-41} and aryl^{9,31,42-46} carbene complexes have been successfully produced. Collectively, the first three types are often referred to as Fischer-type carbenes whereas the latter three are denoted as alkylidene complexes.

Synthesis

Methods for the preparations of secondary carbene complexes are very specific, and may be classified into five categories: acid-assisted elimination, base-assisted elimination, nucleophilic substitution, protonation and alkylation, and hydride addition.

Acid-assisted elimination

Bronsted and Lewis acid-promoted eliminations are the most common synthetic schemes for preparing secondary carbene compounds. McCormick and Angelici²⁷ utilized this method in preparing $\{Cp(C0)_2Fe[CH(SMe)\}CF_3S0_3$ by expelling MeSH from $Cp(C0)_2FeCH(SMe)_2$ With CF_3S0_3H (Eqn. 5).

Similarly, $Cp(CO)_2 Fe(CHPh)^{+45}$, $(CO)_5 W(CHPh)^{43}$ and a few other benzylidene complexes were obtained from the reactions of acids with the corresponding metal ether precursors (Eqn. 6)

 $M - C - H + \frac{HOSO_2CF_3}{OMe} M = C + MeOH$ (6)

$$M = Cp(CO)_2 Fe, (CO)_5 W$$

R = Me, Et

By far the most versatile, but often non-selective, lewis acid for this transformation is the trityl cation, Ph_3C^+ . This cation has been successfully employed in the preparation of $Cp(CO)(L)Fe[CH(OR)]^+$ ²⁴ by means of hydride abstraction from $Cp(CO)(L)FeCH_2OR$ (Eqn. 7).

$$Cp(CO)(L)FeCH_2OR + (Ph_3C)PF_6 \longrightarrow \{Cp(CO)(L)Fe[CH(OR)]\}PF_6 + HCPh_3$$
 (7)
L = C0, PPh_3

Likewise, $[Cp(NO)(PPh_3)Re(CHPh)]^+ 42$ was isolated from the reaction of the benzyl precusor with trityl cation. This reagent is not

limited to hydride removal; abstraction of methoxide ion from a metal ether complex also occurs under the proper conditions. Such process was observed in the reaction of $Cp(CO)_2Fe[CH(Ph)(OMe)]$ and trityl, affording $[Cp(CO)_2Fe(CHPh)]PF_6^{45}$ (Eqn. 8)

$$CP(CO)_{2}Fe - C - H + (CPh_{3})PF_{6} \rightarrow [CP(CO)_{2}Fe(CHPh)]PF_{6}$$
(8)

Base-assisted elimination

Elimination with base is a relatively rare reaction in organometallic chemistry. A few Ta and NB neopentyl complexes have been observed to undergo α -proton elimination in the presence of a Grignard reagent. Schrock et al., accidently prepared $((Me)_{3}CCH_{2})_{3}TaCHC(Me)_{3}^{7}$ by reacting $Cl_{2}Ta(CH_{2}C(Me_{3}))_{3}$ with $LiCH_{2}CMe_{3}$. Presumably, the reaction proceeded through the pentaneopentyl tantalum complex; α -hydrogen abstraction from one of the ligands afforded the observed secondary carbene (Eqn. 9).

$$C1_2Ta(CH_2R)_3 + 2LiCH_2R \rightarrow [Ta(CH_2R)_5] \rightarrow RCH_3 + (RCH_2)_3TaCHR$$

(9)

R = t-Bu

It was suggested that the high acidity of the α -hydrogen is faciliated by steric crowding about the metal. Since this initial success, series of Nb and Ta alkylidenes have been synthesized in a similar fashion⁴⁰.

Nucleophilic substitution

A number of amino hydrido carbenes have been obtained from the reaction of iminyl chloride with organometallic nucleophiles. Lappert et al., showed that the oxidative addition of N,N dimethylchloromethyl enamine chloride, $(Me_2NCHCl)Cl$, to $(PEt_3)_3RhCl$ resulted in the formation of $(PEt_3)_2 RhCl_3 (CHNMe_2)^{13}$. Analogously, other Rh¹², Pt¹³, Ru¹⁴ and Ir¹⁴ secondary amino carbene complexes have been prepared (Eqn. 10).

 $(PEt_3)_3RhC1 + [Me_2NCHC1]C1 \rightarrow (PEt_3)_2C1_3Rh(CHNMe_2)$ (10)

The metal carbonyl anions, $Cr(CO)_5^{2-}$ and $Fe(CO)_4^{2-10,14}$, also react with the iminium chloride to yield amino carbenes (Eqn. 11). Secondary carbene complexes of Mn, Re, V, Cr, Mo, W, Co have been synthesized by this method¹⁴.

$$M^{2^{-}} + (Me_2NCHX)C1 \longrightarrow MCHNMe_2$$
 (11)

 $M = Cr(CO)_5$, $Fe(CO)_4$; X = H, C1, SMe

Despite these successes in generating secondary amino carbenes, this novel method has not been extended to the preparations of other classes of carbenes.

Protonation and alkylation

Conversion of metalacyls to the analogous carbene complexes simply by alkylation marked a milestone in organometallic chemistry $^{47-48}$. Due to the instability of M[C(OH)R], the parallel protonation reaction is rarely cited $^{47-48}$. Gladysz et al., showed that Cp(NO)PPh₃Re[CH(OH)]^{+ 23} may be prepared by the protonation of the formyl complex (Eqn. 12)

$$Cp(NO)PPh_{3}CHO + H^{+} - Cp(NO)PPh_{3}Re = C$$
 (12)

Similarly, a number of iminoyl formyls $(Rh^{15-16}, 0s^{19}, Pt^{11,18}, accept a proton to give carbenes as indicated in Eqn. 13.$

$$trans(PPh_{3})_{2}(C0)_{2}(C1)Os(CHNMe) + H^{+}$$

$$(13)$$

$$trans(PPh_{3})_{2}(C0)_{2}(C1)Os(CHNHMe)^{+}$$

Protonation of an n'-cyclopropyl metal complex produced an ethyl secondary carbene compound (Eqn. 14). However, this complex underwent facile hydrogen rearrangement to give the n^2 -propene derivative³⁴.

$$C_{p}(CO)_{2}Fe(CHCH_{2}CH_{2}) + H^{+} \longrightarrow C_{p}(CO)_{2}Fe(CHEt)^{+}$$

$$(14)$$

$$C_{p}(CO)_{2}Fe(n^{2}-H_{2}C=CHCH_{3})^{+}$$

Collins and Roper¹⁹ found that a formyl complex, $(PPh_3)_2(CO)L(C1)Os(CHO)$ when alkylated with CF_3SO_3Me yielded the corresponding air stable carbene compound $\{(PPh_3)_2(CO)L(C1)Os[CH(OMe)]\}CF_3SO_3$ (Eqn. 15).

$$(PPh_{3})_{2}(CO)L(C1)OS(CHX) + CF_{3}SO_{3}Me$$
(15)
$$\{(PPh_{3})_{2}CO(L)(C1)OS[CH(XMe)]\}^{+}CF_{3}SO_{3}$$

$$X = 0, S$$

L = (p-tolyl)NC

Analogously, the first sulfur stabilized secondary carbene, ${(PPh_3)_2(CO)L(C1)Os[CH(SMe)]}CF_3SO_3$ was obtained (Eqn. 15).

Hydride addition

Hydride attack on metal-coordinated carbynes leading to the production of secondary alkyl carbene complexes was initially discovered by Fischer and Frank⁴⁶, thus, $Cp(CO)_2 ReCPh^+$ was reduced with EtAlH₂ to afford $Cp(CO)_2 Re(CHPh)$ (Eqn. 16).

$$C_{p}(CO)_{2}Re \equiv CPh^{+} + EtA1H_{2} \longrightarrow C_{p}(CO)_{2}Re = C_{H}$$
(16)

This α -hydride addition technique has also been successfully employed in the synthesis of an amino carbene²² (Eqn. 17).

$$(CO)_{5}MO=C=N + LIA1H_{4} \rightarrow (CO)_{5}MO=C$$
(17)
Me NHMe

The above method is a useful technique for obtaining otherwise inaccessible secondary carbene complexes. However, the unavailability of suitable carbyne complexes has reduced the applicability of this approach.

In contrast to carbynes, isocyanide complexes are relatively abundant. Treichel et al.¹⁷ found that a number of di and tri-isocyanide compounds reacted with borohydride to give boro-heterocyclic metal carbene complexes (Eqns. 18 and 19).

$$Cp(CO)Fe(CNMe)_2^+ + BH_4^- \longrightarrow Cp(CO)Fe(CHNMe)_2BH_2$$
 (18)

$$Cp(Fe(CNMe)_{3}^{+} + BH_{4}^{-} \longrightarrow CpFe(CHNMe)_{3}BH$$
 (19)

Quite recently²⁵, metal carbonyls of group VI transition metals and Nb have been found to be susceptible to reduction with organometallic hydrides, giving oxo-carbene complexes (Eqn. 20).

 $C_{P_2}MCO + (M_{c_5}C_{c_5})_2ZrH_2 \longrightarrow C_{P_2}M[CH(OZrH(M_{c_5}C_{c_5})_2)]$ (20)

M = W, Mo, Cr, Nb(H)

Miscellaneous

A number of interesting secondary carbene preparations which do not fit into the previous discussions are summarized in Table I.

.

Table 1. Other secondary carbene preparations

Reaction	Reference
$T_{a}(CHR)(PEt_{3})_{2}Cl_{3} + (OR)_{4}WO \rightarrow T_{a}(OR)_{4}Cl + Cl_{2}(PEt_{3})_{2}(O)W(CHR)$ R = t-Bu	38
$[(PPh_3)CIPtCH_2N(Me)_2CH_2N(Me)_2]CI \xrightarrow{\Delta} CI_2(PPh_3)PtCHN(Me)_2$	20
$(Cp(NO)PPh_3ReCH_2)_2SMe^+ \longrightarrow Cp(NO)PPh_3ReMe +$	
[Cp(NO)PPh ₃ ReCHSMe] ⁺	26
$MC1_6 + LiCH_2SiMe_3 \longrightarrow (Me_3SiCH_2)_3(MCHSiMe_3)^a$	29
$Cp_2ZrMe(n^2MeCH0) + Cp_2WH_2 \longrightarrow Cp_2W(CHMe) + Cp_2Zr(OH)(Me)$	41
$TPPFeCl_2 + PhSCHCl_2 + Fe^{O} \longrightarrow TPPFe(CHSPh)$	28
$CpRe(NO)PPh_3(CH_2OMe) + Me^+ \rightarrow CpRe(NO)PPh_3[CH(OMe)]^+$	23
$CpMo(CO)_{3}CH_{2}OMe + Ph_{3}C^{+} \longrightarrow CpMo(CO)_{3}Me + CpMo(CO)_{3}[CH(OMe)]^{+}$	9

^aNot fully characterized.

Chemical Properties

The chemistry of metal-coordinated carbon ligands is rich and varied. Most of the chemical reactivity studies are on alkyl carbene, alkylidene, complexes. By and large, alkylidenes undergo carbene ligand transfer to olefins to give cyclopropane products⁴⁹, as exemplified in the reaction of $Cp(CO)_2Fe(CHPh)^+$ and propene⁴⁵ (Eqn. 21).

$$C_{P}(CO)_{2}FeCHPh^{+} + H_{2}C=CHMe \longrightarrow PhcHCH_{2}CHMe$$
 (21)

Dimerization of carbene ligands leading to olefins is frequently observed 43,45 (Eqn. 22).

 $Cp(CO)_{2}Fe(CHPh)^{+} \longrightarrow PhCH=CHPh (cis and trans)$ (22)

Similar reactions have also been found in methylidene complexes, although the conditions are milder than those in Eqns. 21 and 22 due to more favorable steric and electronic considerations. Such similarity has encouraged catalytic studies on alkylidenes. Several alkylidenes have been discovered to be catalytically active in promoting olefin metathesis^{38,40}. In this reaction, the olefin and carbene groups are presumed to unite to form a puckered metallocyclobutane intermediate⁴³, subsequent scission results in overall alkyl exchange³⁸ (Eqn. 23)

$$C1_2(PEt_3)_2W(0)(CHR) + 2-pentene + A1C1_3$$
 (23)
 $C1_2(PEt_3)_2W(0)(CHR') + RCH=CHR'$

R=t-Bu R'=Me, Et

Schrock found that the highly polarized metal carbene bond of $(RCH_2)_3$ Ta(CHR) may be regarded as being similar to a Wittig reagent; as in the Wittig reaction, the carbene transfers to organic acyls under mild conditions, giving olefins in high yields⁴⁰ (Eqn. 24).

$$(RCH_2)_3 Ta(CHR) + EtOCHO \longrightarrow EtOCHCHR$$
 (24)
R = t-Bu

Intramolecular β -H migration is very common in alkylidene complexes. For instance, Cp(CO)₂Fe(CHEt)⁺³⁴, generated in situ from Cp(CO)₂Fe(CHCH₂CH₂) and acid, undergoes a facile 1,2 shift to achieve the η^2 -propene complex (Eqn. 14). Likewise, other β -H
containing alkylidene complexes convert to their olefinic comlexes upon heating^{32,41}.

Although the chemistry of heteroatom stabilized, Fischer-type, secondary carbenes has recently been explored, little is known. Hence, their chemical reactivities are deferred and will be discussed in the subsequent sections.

Spectroscopic Properties

The most commonly used analytical technique for elucidating carbene complex structure is 'H NMR. The electron deficient C carb causes the carbene hydrogen resonance to be at very low fields, ranging from 9 to 18 δ . Temperature dependent 'H NMR studies also provide a means of estimating rotational barriers around the M-C and C bonds. Schrock 40 calculated the M-C rotational barrier in $Cp_{2}Ta(CH_{2}Ph)(CHPh)^{+}$ to be about 19.2 kcal/mole, which is 1.8 kcal/mole lower than that of $Cp_2Ta(Me)(CH_2)^+$, whose metal-C bond is essentially a double bond based on an x-ray crystallographic study. The lower rotational barrier in Cp₂Ta(CH₂Ph)(CHPh)⁺ was interpreted as indicating an increase in $C_{carb} = C_{ipso}$ double bonding at the expense of M-C bonding and is in accord with the x-ray data³¹. Brookhart et al.⁵⁰, noted that the rotational energy about the C_{carb} - C_{ipso} bond of Cp(CO)₂Fe[CH(p-tolyl)]⁺ is estimated to be 1.3 kcal/mole higher than the phenyl analog by variable temperature 'H NMR

62

experiments. This significant change was taken to indicate that the aryl π electrons are delocalized over the C_{carb}; this results in an accumulation of cationic character on the ring and an increase in the C_{carb}-C_{ipso} bond strength by means of π overlap. The extent of such electron redistribution chiefly depends on the electron donating abilities of para and ortho substituents of the aryl. Methyl is found to be more electron donating than hydrogen based on the pioneering works by Hammett in organic aryl systems⁵¹. Hence, the para-tolyl secondary carbene must have greater C_{carb}-C_{ipso} double bond character than its phenyl counterpart.

Although the barriers for rotation in heteroatom-stabilized secondary carbenes have not yet been determined, the general consensus is that the C_{carb} -X rotational barrier is expected to be substantially higher than that for the C_{carb} -C rotation of in alkylidenes, due to more favorable X to C_{carb} m-backbonding. For example, the methyl resonances (syn and anti relative to the carbene hydrogen) in RhCl₃(PEt₃)₂(CHNMe₂), figure 1, do not coalesce even at 150°C.¹² This suggests strong

Figure 1. Structure of RhCHNMe,

63

C-N π -bond character which is confirmed by an x-ray structural determination which shows the C-N bond to be significantly shorter than a typical C-N single bond.

 13 C NMR is also a valuable technique for establishing the presence of a carbene ligand⁵². In general, the C_{carb} resonance of secondary carbene complexes occurs in the range of 190-350 PPM downfield from TMS. With few exceptions, Ta and Nb alkylidenes and Fischer-type carbenes appear below 300 PPM; they are also less electrophilic and less prone to decompose than those at low fields (300-350 PPM).

Structural and Bonding

Owing to the inherent instability of alkylidenes, few single crystal x-ray structural determinations of secondary carbene complexes have been described. Schrock⁴⁰ reported the Ta-C_{carb} distance in Cp₂Ta(CH₂Ph)(CHPh) to be slightly longer than the full double bond found in Cp₂Ta(Me)(CH₂) and the Ta-C_{carb}-C_{ipso} angle to open up 15° from the idealized sp² hybridized angle of 120°. More strikingly, the analogous bond in the 14-eletron complex, $(Me_5C_5)Ta(CH_2Ph)_2(CHPh)^{44}$ is marginally longer than that in the carbyne, $(Me_5C_5)Ta(PMe_3)_2Cl(CPh)$, and the Ta-C_{carb}-C angle is 166° which amounts to being bent 5° from the analogous angle of the carbyne. Since the carbenic phenyl rings in both cited as 40°, p-pback bonding is virtually negligible; this is reflected in the observation of little or no shortening of the $C_{carb}-C_{ipso}$ bonds. These data point to a strong M- C_{carb} interaction and weak $C_{carb}-C_{ipso} \pi$ overlap. These conclusions are also valid in the cases of $Cp_2W(CHPh)^{41}$ and $Cl_2(PEt_3)_2W(0)[CH(CMe_3)]^{38}$ where both structures exhibit remarkable resemblance to the tantalum complexes.

With the exception of the metal oxyl carbene complex²⁵, all reported structural studies of Fischer-type secondary carbenes are amino carbenes 12, 15, 20, 53. By and large, the C_{carb} and N are approximately planar with an M-C-N angle in the range of $125-140^{\circ}$. The observed deviations from the ideal 120° are presumably due to the smallness of the carbene hydrogen. The metal-C and C -Ndistances are invariably shorter than expected for their respective single bonds. Thus, d-p and p-p interactions must both be important in amino carbenes. In $Cp_2W[CH(0ZrH(Me_5C_5)_2)]^{25}$, the $W-C_{carb}$ distance is shorter than that in (CO)₅W(CPh₂)⁵⁴ which has a W-C_{carb} double bond; the C-O in $Cp_2W[CH(0ZrH(Me_5C_5)_2)]$ is marginally shorter than a single bond which suggests that W-C carb bonding. However, this result is probably not general for monometallic oxyl carbones owing to the fact that the Zr atom in this carbene complex competes with the C_{carb} for the oxygen lone pairs; this leads to a weakening of the C-O π -interaction.

The Present Research

The chemistry of sulfur-containing organometallic compounds has been a long-time interest in this laboratory. More recently, we have extended our studies into sulfur-stabilized carbene complexes of transition metals. In the course of these investigations, we synthesized the first iron thiomethoxyl hydrido carbene, $Cp(CO)_2Fe[CH(SMe)]^{+27}$. Despite our earlier studies and recent investigations by other groups of $\{(PPh_3)_2(CO)_2(C1)Os[CH(SMe)]\}^{+19}$, $CpRe(NO)PPh_3[CH(SMe)]^{+26}$ and $TPPFe[CH(SPh)]^{28}$, little is known about the reactivity of thioalkoxyl secondary carbene complexes. Thus, we have examined the chemical and physical properties of $Cp(CO)_2Fe[CH(SMe)]^+$ and its immediate derivatives.

EXPERIMENTAL

General Procedure

All reactions were carried out under an N₂ atmosphere at room temperature, unless specified otherwise. Schlenk ware and a vacuum manifold were standard equipment for carrying out the reactions. A 500 ml 3 neck-flask equipped with a stopcock in the bottom was used for amalgam reductions. Low pressure (1-5 atmospheres) reactions were conducted in a pop bottle sealed with a neoprene lid and metal cap.

The exchange of PF_6^- with other anions was performed by dissolving the desired complex in either acetone containing 10 eqv. of $(NH_4)PF_6$ or acetonitrile with 10 eqv. of KPF_6 solution. The mixture was allowed to metathesize for $\frac{1}{2}$ hr, and the solvent was removed under reduced pressure supplied by a vacuum manifold which was about 1 torr. The resulting residue was extracted with CH_2Cl_2 , the combined extracts were filtered through a frit, and the resulting solution volume was concentrated under reduced pressure. A layer of a less polar organic solvent (Et₂0, hexane, EtOH) was placed over the CH_2Cl_2 solution, and the mixture was slowly chilled to -20° to induce crystallization.

Solvents

For our studies, CH_2CI_2 was distilled from CaH_2 under an N_2 atmosphere. The solvent MeCN was dried over CaH_2 to remove most of the moisture and then decanted into a fresh CaH_2 -containing flask for distillation. The distilled fraction was then re-distilled from P_2O_5 . The CaH₂ and P_2O_5 dryings were repeated once more before storing in a Schlenk flask under a nitrogen atmosphere for later use. The solvent Et₂O was distilled from K and benzophenone. Tetrahydrofuran was distilled from Na and benzophenone and used immediately. Hexane was purged with N₂ and stored over 5 Å molecular sieves. Acetone was distilled from P₂O₅ twice before use. Methanol was distilled from Mg and a catalytic amount of I₂ after standing for 12 hr.

Instrumentation

Infrared spectra were recorded on a Perkin-Elmer 281 spectrophotometer; NaCl cells with 1 mm path length were commonly used except for THF solutions when 0.1 mm thick cells were used. The instrument was calibrated with gaseous CO, and the band positions are believed to be accurate to within 2 cm⁻¹.

Proton NMR spectra were obtained with Varian 360 or Hatachi R2OB (60 MHz) spectrometers. ¹H NMR spectra for variable-temperature studies and low concentration samples were recorded on a JEOL FX90Q (89.55 MHz) Fourier transform spectrometer. ¹³C NMR spectra were obtained with a Bruker WM300 (75.43 MHz) or a JEOL FX90Q (22.50 MHz) Fourier transform spectrometer. ³¹P spectra were run on a Bruker WM300 (121.44 MHz) instrument. Five mm diameter NMR sample tubes were used for all spectra; $Cr(acac)_3$ (35 mg/ml) was added, unless specified otherwise, for ¹³C and ³¹P samples to reduce data acquisition time. Tetramethylsilane (TMS) or deuterated solvent was used as

. . . .

an internal standard for ¹H and ¹³C NMR spectra. H_3PO_4 capillary insert was employed as the internal reference for ³¹P NMR spectra. Chemical shifts for ¹H NMR bands are reported in δ units relative to TMS; ³¹P resonances appeared upfield from H_3PO_4 and are assigned negative values.

GC traces were recorded on a Varian 1700 gas chromotograph equipped with a 30-foot 5% SE30 capillary column. Mass spectra and GC-MS spectra were performed on a Finnigan 400 GC-MS with INCOS 2300 data system, GC Model 9610. Decomposition and melting points were determined with a Thomas Hoover capillary melting point apparatus and are uncorrected. Elemental analyses were made by the Ames Laboratory.

Reagents

<u>Organic</u> All alkyl phosphines and $P(0Ph)_3$ were purchased from Strem Chemical and used without further purification. A sample of $P(0CH_2)_3CMe$ was kindly supplied by Steve Socol; PCl_3 and $C1PPh_2$ were distilled before use. CH_2N_2/Et_20^{55} , $C1CH_2SMe^{56}$, $HC(SMe)_3^{57}$ and $CyNC^{58}$ were synthesized according to the literature procedures, and CH_2N_2/Et_20 was dried with anhydrous Na_2CO_3 before use. All amines except volatile ones (Me_2NH , $MeNH_2$, NH_3) were stored over KOH overnight and distilled from Ba0. $Me_3N0.2H_20$ was obtained from Aldrich and dried by benzene azeotropic distillation.

<u>Inorganic</u> Samples of LiAlH₄, LiAlD₄, LiAl(OBu^T)₃H and n-BuLi (2.5 M in hexane) were available from Alfa; Li(BEt₃H) (1 M in THF), HBF₄-Et₂O and CF₃SO₃H were purchased from Aldrich; $Mn_2(CO)_{10}$ and $(Cp(CO)_2Fe)_2$ were obtained from Strem Chemical, and CH_3SO_3F was acquired from Tridom Chemical (Fluka). Other chemicals were also commercially available.

Synthesis, Reactions and X-Ray Structure

Secondary carbene complexes and derivatives of iron

 $\frac{\text{Synthesis of Cp(CO)}_{2}\text{Fe[CH(SMe)}_{2}] \text{ from } \{\text{Cp(CO)}_{2}\text{Fe[C(SMe)}_{2}]\}\text{PF}_{6}}{\text{and Li}(\text{AlH}_{4})} \text{ A solution of 100 ml of THF containing}} \\ \frac{\text{Cp(CO)}_{2}\text{Fe[C(SMe)}_{2}]}\text{PF}_{6}, [1], (0.10 g, 0.23 mmol) was treated with} \\ \text{Li}[\text{AlH}_{4}] (0.020 g, 0.47 mmol); the yellow solution turned dark brown immediately and evolution of gas was apparent. The mixture was stirred for an additional 20 min, and the solvent was then removed under reduced pressure to afford a stenchy brown solid. The residue was then extracted by rapidly stirring for 30 min with 20 ml of hexane. The resulting extract was then filtered through Celite on a glass frit under an N₂ atmosphere. Upon evaporation under reduced pressure, a yellow oil of Cp(CO)₂Fe[CH(SMe)₂] (0.056 g, 85%),[2], was obtained. The IR and ¹H NMR spectra of the oily [2] were in accord with the previously recorded spectra of this compound²⁷; the oil was used in subsequent reactions without further purification.$

When this reaction was scaled up 10-fold, the major organometallic product obtained upon extraction was $[Cp(CO)_{2}Fe]_{2},[3]$.

 $\frac{\text{Synthesis of Cp(CO)}_2 \text{Fe[CH(SMe)}_2], [2], \text{ from } \{\text{Cp(CO)}_2 \text{Fe[C(SMe)}_2]\} \text{PF}_6}{\text{[1], and Li(Et}_3 \text{BH})}$ A suspension of [1] (2.0 g, 4.6 mmol) in 20 ml

of THF was treated dropwise with $\text{Li}(\text{Et}_{3}\text{BH})$ (4.8 ml, 4.8 mmol), diluted with 5 ml of THF, via a 25 ml addition funnel in a period of 15 min. The deep brown mixture was allowed to react for an additional 20 min; the solvent was removed in vacuo, affording a brown oil. The oil was extracted as described in the preceding synthesis to furnish [2](1.3 g, 85%).

Synthesis of $Cp(CO)_2 Fe[CH(SMe)_2], [2]$, from $\{Cp(CO)_2 Fe[C(SMe)_2]\}PF_6$,[1], and Li(A1(OBu^t)₃H A sample of [1] (2.0 g, 4.6 mmol) was suspended in 20 ml of THF, Li(A1(OBu^t)₃H) (1.5 g, 5.8 mmol) was added, and the mixture was stirred for 30 min. The solvent was then evaporated under vacuum, and the resulting residue was extracted as noted above. This gave a mixture of [2] and a white inert solid which totaled 1.5 g. The concentration of [2] in the mixture was determined by the intensities of the v(CO) absorbances of the complex to be 80-85%.

Reaction of $[Cp(CO)_2Fe]Na$ and $[HC(SMe)_2]PF_6$ The organic cation⁵⁹ was synthesized by adding $HC(SMe)_3(1.0 \text{ g}, 6.5 \text{ mmol})$ in 10 ml of Et_20 to a rapidly stirred 5 ml CH_2Cl_2 solution of $(CPh_3)PF_6$ (2.3 g, 5.8 mmol) at -40°C. After mixing for 10 min, a white precipitate was apparent. The solvent was carefully decanted via canula, and the white solid was washed with dried Et_20 at -40°C twice, and the remaining solvent was removed under vacuum to give $[HC(SMe)_2]PF_6$ (1.1 g, 75%). The cation is sensitive to water and is best used immediately.

A 10 ml THF solution of Na[Cp(CO)₂Fe]⁶⁰, synthesized from

71

 $[Cp(CO)_2Fe]_2$ (0.77 g, 4.4 mmol) and 3% sodium amalgram, was transferred to a 10 ml THF solution of $[HC(SMe)_2]PF_6$ (1.1 g, 4.4 mmol) at -78°C. The pale yellow solution turned dark at once and the only identifiable product from the IR spectrum of the reaction mixture was $[Cp(CO)_2Fe]_2$,[3]. Analogously, when $K[Cp(CO)_2Fe]^{61}$ was used, the outcome was identical.

Reaction of $[Mn(CO)_5]Li$ and $[HC(SMe)_2]PF_6$ Into a THF solution of $Mn_2(CO)_{10}$ (0.10 g, 0.26 mmol), $(Et_3BH)Li$ (0.57 ml, 0.57 mmol) was dripped at -78 C; evolution of H₂ was evident⁶². After 30 min of mixing, the solution of the resulting $[Mn(CO)_5]Li$ was transferred to a THF solution of $[HC(SMe)_2]PF_6$ (0.12 g, 0.46 mmol) at -78°C using a cannula tube. The resulting mixture was slowly warmed to room temperature by removing the cold bath. The solvent was then removed under reduced pressure, and the resulting residue was loaded onto a $3x_{35}$ cm Florisil column and eluted with hexane. Two yellow bands were collected; the first band was identified by IR to be $Mn_2(CO)_{10}$; the second band was partially characterized and is believed to be $(CO)_5Mn[CH(SMe)_2]$ (7 mg, 5%).

¹H(CDC1₃) : 5.00(CH), 2.69(SMe)

Preparation of $\{Cp(C0)_2 Fe[CH(SMe)]\}X; X: CF_3SO_3, [4], BF_4, [5]$ A rapidly stirred solution containing [2] (0.10 g, 0.35 mmol) in 15 ml of Et₂0 was treated dropwise via a syringe with CF₃SO₃H until precipitation ceased (ca. 50 µl); a golden precipitate and MeSH, identified by its disagreeable odor, were found. The solvent was carefully removed by decantation, and the remaining solid was washed a few times with dry Et_2^0 and pumped dry to afford $\{\text{Cp}(\text{C0})_2\text{Fe}[\text{CH}(\text{SMe})]\}\text{CF}_3\text{S0}_3, [4],$ (0.10 g, 74%). The complex is very sensitive to water and modestly to light and should be stored in the dark under N₂ at -20°C. Even taking those precautions, decomposition of [4] is apparent after 2 weeks of storage. Thus, it is best used immediately.

> IR(CH₂Cl₂): 2067 s, 2026 s (2069 s, 2029 s were previously reported)

A 13 C NMR spectrum of the compound was not obtained due to extensive decomposition during data acquisition even without the addition of Cr(acac)₃ which apparently accelerates the decomposition.

Like CF_3SO_3H , HBF_4-Et_2O also produced the corresponding carbene complex, { $Cp(CO)_2Fe[CH(SMe)]$ }BF₄,[5], in 75% upon reaction with [2]. It exhibited similar spectral and stability characteristics to [4].

IR(CH₂Cl₂): 2067 s, 2028 s

 $\frac{\text{Preparation of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})]\}\text{PF}_6,[6]}{(0.20 \text{ g}, 0.70 \text{ mmol}) \text{ in 15 ml of dry Et}_20 \text{ was transferred via a}}$ cannula to a rapidly stirred solution of $(\text{CPh}_3)\text{PF}_6$ (0.18 g, 0.63 mmol) in 10 ml of CH_2Cl_2 . The resulting orange solution was slowly warmed

to room temperature; a yellow precipitate was formed. An additional 15 ml of Et_2^0 was added to induce further precipitation. The suspension was filtered through a fine frit, and the remaining solid was washed with Et_2^0 then dried under vacuum to afford the (0.20 g, 75%) crude product {Cp(C0)}_2 Fe[CH(SMe)]}PF_6,[6]. The substance is sparingly soluble in CH₂Cl₂ and was recrystallized from CH₂Cl₂/Et₂0 to afford golden plate-like crystal of [6], though, it was found to occlude diethyl ether as established by its ¹H NMR spectrum.

IR(CH₂Cl₂): 2069 s, 2029 s

¹H (CD₂Cl₂): 15.24(br,CH), 5.15(Cp), 3.12(SMe)

 13 C: not obtainable due to rapid decomposition in solution.

Reaction of $Cp(CO)_2FeCH_2SMe,[7]$, and $(CPh_3)PF_6$ A sample of $(CPh_3)PF_6$ (0.15 g, 0.38 mmol) was added to a rapidly stirred CH_2Cl_2 solution of $Cp(CO)_2FeCH_2SMe,[7]$, (0.10 g, 0.42 mmol)⁶³, synthesized from $[Cp(CO)_2Fe]Na$ and $ClCH_2SMe$, at -78°C. The solution was gradually warmed to room temperature, and an IR spectrum of the reaction mixture was obtained which revealed the presence of a small amount of $[6](\sim 5\%)$ and the disappearance of the iron thioether complex. Since little of the desired product was obtained, no further purification was conducted.

 $\frac{\text{Preparation of } \{Cp(CO)_2 Fe[CD(SMe)]\}CF_3SO_3}{(0.10 \text{ g}, 0.23 \text{ mmol}) \text{ was suspended in 100 ml of THF, Li(AlD_4)} (0.025 \text{ g}, 0.60 \text{ mmol}) \text{ was added, and the mixture was allowed to stir}}$

for 20 min. The resulting brown solution was evaporated to dryness, and the remaining residue was extracted with hexane. Workup as for [2] gave $Cp(CO)_2Fe[CD(SMe)_2]$ (0.046 g, 70%). The crude product was then dissolved in 10 ml of Et_2O , and 30 µl of CF_3SO_3H was added. Following the established work up procedures for [4], $\{Cp(CO)_2Fe[CD(SMe)]\}CF_3SO_3$ (0.041 g, 65%) was isolated. The v(CO) absorptions of this product are identical to those of [4].

 $\frac{\text{Reaction of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})]\}\text{CF}_3\text{SO}_3 \text{ with } \text{MePPh}_2 \text{ Freshly}}{\text{Prepared [4] (0.12 g, 0.31 mmol) was suspended in 10 ml of } \text{CH}_2\text{Cl}_2\text{;}}}{\text{MePPh}_2 (0.10 g, 0.51 mmol) \text{ was added.}} \text{ The mixture was stirred for 20}{\text{min, giving a golden yellow solution.}} \text{ The solvent was removed under}}{\text{vacuum, and the resulting oily residue was washed a few times to remove}}{\text{excess phosphine.}} \text{ The anion of the remaining oil was metathesized with} \\ \text{KPF}_6 \text{ in } \text{CH}_3\text{CN.} \text{ Recrystallization from } \text{CH}_2\text{Cl}_2\text{-}\text{Et}_2\text{O} \text{ at } -20^\circ\text{C} \text{ afforded} \\ \text{deep orange crystals of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})(\text{MePPh}_2)]\}\text{PF}_6, [8], (0.13 g, 72\%). \\ \text{Complex [8] is moisture and air stable and can be stored in-definitely at -20^\circ\text{C} under an N}_2 \text{ atmosphere.} \\ \end{array}$

Anal. calcd.: for $C_{22}H_{22}O_2SP_2F_6Fe$, C: 45.37, H: 3.78

Found: C: 46.00, H: 4.08

IR(CH₂Cl₂): 2021 s, 1971 s ¹H(CD₃CN): 7.7(m, Ph), 5.16(Cp), 3.75(d, J_{PH} = 2.93, CH), 2.45(d, J_{PH} = 12.46, PMe), 1.36(d, J_{PH} = 0.73, SMe)

$${}^{13}C(CD_3CN): 214.5(CO), 134.7(d, J_{PC} = 3.9); 133-130; 127.7;$$

$${}^{126.6; 124.3; 132.2 [Ph], 89.3(Cp), 22.5(SMe)}$$

$${}^{7.5(d, J_{PC} = 25.4, CH), 5.4 (d, J_{PC} = 11.72, PMe)}$$

Reaction of $\{Cp(C0)_2Fe[CH(SMe)]\}BF_4$ with PPh₃ To a CH_2C1_2 suspension of [5] (0.10 g, 0.31 mmol), PPh₃ (0.16 g, 0.62 mmol) was introduced. The mixture was stirred until all of [5] went into solution (ca. 30 min). The solvent was then removed under reduced pressure, and the residue was washed with Et_20 . It was recrystallized from $CH_2C1_2-Et_20$ at -20°C giving $\{Cp(C0)_2Fe[CH(SMe)(PPh_3)]\}BF_4$, [9a], (0.16 g, 86%). Complex [9a] is a bright yellow, air-stable material; it may be stored at -20°C under an N₂ atmosphere for months with no noticeable physical changes.

Anal. Calcd.:
$$C_{27}H_{24}O_2PSF_4BFe$$
, C: 55.32, H: 4.10
Found: C: 55.23, H: 4.06
 $IR(CH_2C1_2)$: 2027 s, 1975 s
¹ $H(CD_3CN)$: 7.35(m, Ph), 5.25(Cp), 4.28(d, $J_{PH} = 1.46$, CH)
 $1.67(d, J_{PH} = 0.74$, SMe)
¹³ $C(CD_3CN)$: 215.5(d, $J_{PC} = 5.86$, CO), 213.0(CO), 135.1(d,
 $J_{PC} = 7.81$); 130.5(d, $J_{PC} = 11.72$); 125.7; 122.0
120.6 [Ph], 89.7(Cp), 23.2(SMe), 6.0(d, $J_{PC} = 25.39$, CH)

 $\frac{\text{Preparation of } \{Cp(CO)_2 Fe[CH(SMe)(PPh_3)]\}PF_6, [9b]}{(0.12 \text{ g, } 0.31 \text{ mmol}) \text{ was allowed to react with } PPh_3 (0.16 \text{ g, } 0.62 \text{ mmol})}$ to give an oily product, the residue was metathesized with $[NH_4]PF_6$ in acetone. Upon workup and recrystallization from $CH_2Cl_2-Et_2O$ at -20° C, $\{Cp(CO)_2Fe[CH(SMe)(PPh_3)]\}PF_6, [9b]$, was obtained in 82% yield.

IR(
$$CH_2CI_2$$
): 2027 s, 1975 s
³¹P(CD_3CN): 31.7(PPh₃), -142.3(h, J_{PF} = 706.26, PF₆)

Preparation of $\{Cp(C0)_2 Fe[CH(SMe)(PPh_2C1)]\}BF_4,[10]$ A freshly distilled sample of PPh_2C1 (0.14 g, 0.62 mmol) was injected into a suspension of [5] (0.10 g, 0.31 mmol) in 10 ml of CH_2Cl_2 . The reaction was allowed to proceed for 30 min. Upon purification and recrystallization from CH_2Cl_2 -Et_20 at -20°C, dark orange crystals of $\{Cp(C0)_2 Fe[CH(SMe)(PPh_2C1)]\}BF_4,[10], (0.11 g, 62\%)$ were obtained. The material decomposes when exposed to the ambient environment for a few hours.

13
C(CD₃CN): 214.4(d, J_{PC} = 5.86, CO), 213.2(CO), 136.3;
134.0; 133.6; 126.5; 122.7 [Ph], 89.3(Cp),
22.7(SMe), 12.7(d, J_{PC} = 15.62, CH)

Reaction of $\{Cp(CO)_2Fe[CH(SMe)]\}BF_4$ with PCl₃ A sample of [5] (0.10 g, 0.31 mmol) reacted with 100 µl of freshly distilled PCl₃ in 10 ml of CH₂Cl₂. An infrared spectrum of the solution showed two strong v(CO) bands (2031, 1982 cm⁻¹) which are consistent with the phosphine adduct, $\{Cp(CO)_2Fe[CH(SMe)(PCl_3)]\}BF_4$, [11]. However, the product was not sufficiently stable to be isolated; thus, satisfactory NMR data for [11] were not obtained.

 $\frac{\text{Preparation of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})(\text{P}(\text{OPh})_3)]\}\text{PF}_6,[12]}{\text{A sample}} \text{ A sample}}$ of P(OPh)₃ (0.20 g, 0.67 mmol) was allowed to react with [4] (0.12 g,
0.31 mmol) in CH₂Cl₂ for 30 min. The resulting solution was pumped
dry; the residue was metathesized with KPF₆ in MeCN, and recrystallized
from CH₂Cl₂-Et₂O at -20°C, affording dark brown crystals of
{Cp(CO)₂Fe[CH(SMe)(P(OPh)_3)]}\text{PF}_6,[12], (0.15 g, 72\%). Compound [12]
is quite stable toward moisture and air.

Anal. Calcd.:
$$C_{27}H_{24}O_5SP_2F_6Fe$$
, C: 46.83, H: 3.47
Found: C: 46.03, H: 3.66
 $IR(CH_2Cl_2)$: 2032 s, 1986 s
¹ $H(CD_3CN)$: 7.35(m, Ph), 5.25(Cp), 3.41(d, $J_{PH} = 7.33$, CH)
2.12(d, $J_{PH} = 1.71$, SMe)
¹³ $C(CD_3CN)$: 214.5; 213.6 [CO], 150.7(d, $J_{PC} = 13.68$); 131.7;
128.3(d, $J_{PC} = 3.90$); 120.6 [Ph], 88.1(Cp),
20.5(SMe, 10.78(d, $J_{PC} = 130.86$, CH)

 $\frac{\text{Preparation of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})(\text{P}(\text{OCH}_2)_3\text{CMe})\} \} X, X = \frac{(\text{F}_3\text{SO}_3([13a]), \text{PF}_6([13b])}{(0.10 \text{ g}, 0.68 \text{ mmol}) \text{ reacted with } [4] (0.12 \text{ g}, 0.31 \text{ mmol}) \text{ to give a}} (0.10 \text{ g}, 0.68 \text{ mmol}) \text{ reacted with } [4] (0.12 \text{ g}, 0.31 \text{ mmol}) \text{ to give a}} (0.10 \text{ g}, 0.68 \text{ mmol}) \text{ reacted with } [4] (0.12 \text{ g}, 0.31 \text{ mmol}) \text{ to give a}} (13a) \text{ crude mixture of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})(\text{P}(\text{OCH}_2)_3\text{CMe})]\} \text{CF}_3\text{SO}_3, [13a], upon} \text{ evaporation. The mixture was washed with } \text{Et}_2\text{O} \text{ and then recrystallized} \text{ from } \text{CH}_2\text{Cl}_2\text{-Et}_2\text{O} \text{ at } -20^\circ\text{C} \text{ to yield a golden powder of } [13a] (0.14 \text{ g}, 87\%). This compound exhibits remarkable stability toward air; it eventually turned black when exposed to laboratory lighting for few days under N_2.}$

Since [13a] was obtained in powder form and was not suitable for a single crystal X-ray determination, it was metathesized with $(NH_4)PF_6$ in acetone. [13b] was isolated in 64% yield from CH_2Cl_2 - Et_20 at -20°C. Microscopic crystals were found which were suitable for X-ray analysis.

$$IR(CH_{2}Cl_{2}): 2042 \text{ s, } 1992 \text{ s}$$

$$^{1}H(CD_{3}CN): 5.13(Cp), 4.74(d, J_{PH} = 5.37, 0CH_{2}), 2.67(d, J_{PH} = 2.44, CH), 2.22(SMe), 0.94(CMe)$$

$$^{13}C(CD_{3}CN): 214.0(d, J_{PC} = 3.66); 213.1[CO], 87.4(Cp), 80.7(d, J_{PC} = 6.1, 0CH_{2}), 36.3(d, J_{PC} = 34.2, CMe), 23.5(SMe), 13.0(CMe), -5.1(d, J_{PC} = 101.32, CH)$$

³¹P(CD₃CN): 60.4(P(0CH₂)₃CMe), -142.3 (h,
$$J_{PF} = 708.01, PF_{6}$$
)

 $\frac{\text{Crystal data}}{(\text{Cp(CO)}_{2}\text{Fe[CH(SMe)(P(OCH_{2})_{3}\text{CMe})]}\text{PF}_{6}, \text{ MW 530.0},}$ monoclinic, P2₁/c, a = 10.359(3), b = 12.284(4), c = 16.234(4) Å, $\beta = 95.25(3), V = 2056.9 \text{ Å}^{3}, \rho_{calcd.} = 1.711 \text{ g/cm}^{3}, Z = 4.$

<u>Data acquisition</u> The title compound yielded yellow plate-like crystals which were readily indexed using 12 independent reflections and an automatic indexing procedure.⁶⁴

The data were collected at ambient temperature with graphitemonochromated Mo K α ($\lambda = 0.70979$ Å) radiation on an automated fourcircle diffractometer designed and built at the Ames Laboratory; ω -scan; 4151 reflections measured in almost 4 octants; $2\theta \leq 45^{\circ}$; decomposition corrections applied; 2502 reflections with $l \geq 3\sigma_1$ after averaging; agreement between equivalent reflections is 4.2%.

The position of the Fe atom was located by analysis of a sharpened three-dimensional Patterson function. All the remaining non-hydrogen and H₁ atoms were found by successive structure factor and electron density map calculations; a combination of block and full-matrix least-square refinement⁶⁵ of all non-hydrogen atoms was carried out. As expected for the PF_6^- , packing disorder resulted in high conventional and weighted residuals of R = 0.082 and R_w = 0.109, respectively. The scattering factors⁶⁶ were modified for anomalous dispersion effects.⁶⁷ The bond angles (Table 5), bond distances (Table 6), final atom positional parameters (Appendix I), thermal parameters (Appendix 2) and structural factors (Appendix 3) are summarized as indicated.

Pyrolysis of $\{Cp(C0)_2 Fe[CH(SMe)(PPh_3)]\}BF_4$ A 13 mg sample of [9a] was sealed in a 2 ml prescored ampule under an atmosphere of N₂. The bottom 1/3 portion of the ampul was submerged in an oil bath maintained at 200°C for 2 min, gas evolution was apparent. The ampule was then removed from the bath and cooled to room temperature; it was broken open leaving a mixture of an amber oil and a brown residue. The oily product was separated from the mixture simply by extraction with CCl₄; it was found to consist of 4 major products by GC. They were determined by their GC-MS spectra to be cis and trans 1,2 bis(thiomethoxyl) ethylene, trithiomethoxylmethane and ferrocene. The remaining residue was recrystallized from CH₂Cl₂-Et₂O at -20°C, affording bright yellow crystals of [Cp(CO)₂FePPh₃]BF₄ (10.4 mg, 88%). This product was characterized by its IR and ¹H NMR spectra, which are consistent with reported data⁶⁸ for this compound.

GC-MS spectra of the CCl_{L} solution (m/e)

Cis/trans MeSCH=CHSMe: $122(M + 2 \text{ for } {}^{34}\text{S} \text{ isotope; Calcd. 8.8\%},$ found 8.6\%), 120(M), 105(M-Me)

HC(SMe)₃: $156(M + 2 \text{ for } {}^{34}S \text{ isotope; Calcd. 13.2\%, found}$ 10.4%), 154(M), 107(M-SMe)

Cp₂Fe: 186(M), 121(M-Cp), 56(M-2Cp)

IR(
$$CH_2CI_2$$
): 2078 s, 2039 s
¹H(CD_3CN): 5.44(d, J_{PH} = 1.22, Cp), 4.43(d, J_{PH} = 5.13,
OCH₂), 1.93(CMe)

$$^{13}C(CD_3CN): 206.7(d, J_{PC} = 39.06, C0), 88.7(Cp), 78.7(d, J_{PC} = 5.86 0CH_2), 33.0(d, 39.15, CMe), 14.4(CMe)$$

Synthesis of $\{Cp(CO)_2 Fe[CH(SMe)(Ph_2PH)]\}CF_3SO_3, [14]$ Dippenylphosphine (0.12 g, 0.64 mmol) was added to [4] (0.12 g, 0.31 mmol) in 10 ml of CH_2Cl_2 . The mixture was stirred for 20 min and then diluted with 10 ml of heptane. The solution volume was gradually reduced in vacuo until complete precipitation occurred; this gave a bright yellow, malodorous solid. The material was dissolved in a minimum amount of MeNO₂ and a layer of diethylether was added to induce crystallization at -20°C; $\{Cp(CO)_2Fe[CH(SMe)(PPh_2H)]\}CF_3SO_3, [14], (0.11 g, 62%)$ was isolated. Compound [14] is not very soluble in most organic solvents and only sparingly soluble in nitromethane.

Anal. Calcd.: $C_{22}H_{20}O_5S_2F_3PFe$, C: 46.16, H: 3.50 Found: C: 45.82, H: 3.54 $IR(CH_2Cl_2)$: 2033 s, 1980 br ¹ $H(CD_3CN)$: 7.72(m, Ph), 7.45(dd, $J_{PH} = 501.31$; $J_{HH} = 10.63$, PH), 5.14(Cp), 3.46(dd, $J_{PH} = 1.47$; $J_{HH} = 10.63$, CH), 1.59(d, $J_{PH} = 0.73$, SMe) ¹³ $C(CD_3NO_2)$: 214.9(d, $J_{PC} = 5.86$); 213.8[CO], 135-130(Ph), 88.5(Cp), 23.3(SMe), 5.6(d, $J_{PC} = 21.49$, CH)

Preparation of $\{Cp(C0)_2Fe[CH(SMe)(HPCy_2)]\}CF_3SO_3, [15],$ Into a CH_2Cl_2 solution of [4] (0.12 g, 0.31 mmol), HPCy_2 (0.10 g, 0.51 mmol) was introduced. Upon initial workup as in the preceding synthesis, 0.12 g crude product of $\{Cp(C0)_2Fe[CH(SMe)(HPCy_2)]\}CF_3SO_3, [15],$ was obtained. The material was recrystallized from THF-hexane giving [15] (0.069 g, 39%). This material is bright yellow and is very soluble in polar organic solvents.

> Anal. Calcd.: $C_{22}H_{32}O_5S_2F_3PFe$, C: 45.21, H: 5.48 Found: C: 45.47, H: 5.23 IR(CH₂Cl₂): 2025 s, 1975 s ¹H(CD₃CN): 5.78(d, m, J_{PH} = 439, PH), 5.16(Cp), 3.18(d, d,

$$J_{PH} = 1.47, J_{HH} = 2.93, CH), 2.21(d, J_{PH} = 1.10, SMe), 1.83(m, Cy)$$

¹³C(CD₃CN): 216.2(br, CO), 215.0(CO), 89.2(Cp), 34-26(Cy),
23.3(SMe), -1.3(d,
$$J_{PC} = 19.53$$
, CH)

Anal. Calcd.:
$$C_{16}H_{16}O_{5}S_{2}F_{3}PFe$$
, C: 38.72, H: 3.23
Found: C: 37.84, H: 3.29
 $IR(CH_{2}Cl_{2})$: 2036 s, 1987 s
¹ $H(CD_{3}CN)$: 7.7(m, Ph), 7.25(d, m, $J_{PH} = 482.02$, PH),
6.98(d, m, $J_{PH} = 502.18$, PH), 5.18(Cp), 3.06(d,
d, $J_{PH} = 1.28$, $J_{HH} = 9.9$, CH), 1.79(SMe)
¹³ $C(CD_{3}COCD_{3})$: 213.3(br); 212.3[CO], 135-130(Ph), 87.6(Cp),
22.2(SMe), 1.5(d, $J_{PC} = 11.72$, CH)

<u>Preparation of $\{Cp(CO)_2 Fe[CH(SMe)(CyPH_2)\} PF_6, [17]</u> The$ $reaction of <math>H_2PCy$ (0.10 g, 0.86 mmol) and [4] (0.12 g, 0.31 mmol) in 10 ml of CH_2CI_2 for 20 min gave a gummy residue after workup in according to the procedures described in the preceding synthesis. Therefore, the residue was metathesized with KPF₆ in MeCN. Upon recrystallization, $\{Cp(CO)_2Fe[CH(SMe)(CyPH_2)]\}PF_6, [17], (0.080 g, 52\%)$ was obtained. Like the other adducts, [17] is stable in air and can be maintained indefinitely at -20°C under N₂.</u>

Anal. Calcd.:
$$C_{15}H_{22}O_{2}F_{6}SP_{2}Fe$$
, C: 36.15, H: 4.42
Found: C: 36.99, H: 4.45
 $IR(CH_{2}Cl_{2}): 2036 \text{ s}, 1986 \text{ s}$
¹ $H(CDCl_{3}): 6.16(d, m, J_{PH} = 470.84, PH), 5.83(d, m, J_{PH} = 472.29, PH), 5.15(Cp), 2.87(d, m, J_{PH} = 7.7, CH), 2.29(SMe), 1.90-1.41(m, Cy)$

¹³C(CD₃CN): 214.2(d,
$$J_{PC} = 5.86$$
, c0), 213.8(c0), 87.6(cp),
31.8(d, $J_{PC} = 37.11$), 28.3, 26.5, 25.9[Cy],
22.4(SMe), -4.3(d, $J_{PC} = 19.53$, CH)

$${}^{31}P(CDC1_3): 13.2(t, J_{PH} = 470.84, H_2PCy), -143.5(h, J_{PF} = 710.62, PF_6)$$

Thermal rearrangement of $\{Cp(CO)_2Fe[CH(SMe)(HPPh_2)]\}CF_3SO_3,[14]$ A 35 mg sample of [14] sealed in a prescored ampule was heated at 168°C for 2 min, which turned it into a caramel-like substance. The ampule was allowed to cool to room temperature, then broken open. Its contents were washed with Et_2O and then extracted with CH_2Cl_2 . Filtration and evaporation of the CH_2Cl_2 solution followed by recrystallization from CH_2Cl_2 -Et_2O at -20°C afforded pale yellow crystals of $\{Cp(CO)_2Fe[PPh_2(CH_2SMe)]\}CF_3SO_3,[18], (7 mg, 20%)$. This compound was identified by its IR, ¹H and ³¹P NMR spectra.

IR(CH₂Cl₂): 2057 s, 2012 s

¹
$$H(CD_3NO_2)$$
: 7.7 (m, Ph), 5.38 (d, $J_{PH} = 1.46$, Cp)
3.82 (d, $J_{PH} = 6.1$, CH₂), 1.99 (d, $J_{PH} = 1.46$,
SMe)

$$^{31}P(CD_3CN): 63.69$$

Thermal rearrangement of $\{Cp(C0)_2Fe[CH(SMe)(HPCy_2)]\}CF_3S0_3,[15]$ By a procedure analogous to that used in the rearrangement of [14], 20 mg of [15] was heated at 200°C for 2 min; 4 mg (20%) of $\{Cp(C0)_2Fe[PCy_2(CH_2SMe)]\}CF_3S0_3,[19]$, was obtained. This compound was identified by its IR and ¹H NMR spectra.

IR(CH₂Cl₂): 2049 s, 2005 s

¹ $H(CD_3CN)$: 5.41 (d, $J_{PH} = 1.47$, Cp), 3.21 (d, $J_{PH} = 9.53$, CH₂), 2.32 (d, $J_{PH} = 1.84$, SMe), 1.83 (m, Cy) Preparations of $Cp(CO)_2 Fe[CH(SMe)(PPh_2)], [20]$ A THF suspension of [14] (0.020 g, 0.035 mmol) was chilled at -78°C with an acetonedryice bath. It was then treated with 19 µl of n-BuLi (2.5 M in hexane), and the mixture was warmed to room temperature slowly, producing a pale orange solution. The solvent was removed at reduced pressure, and the remaining residue was extracted with hexane to yield an air-sensitive glassy product of [20] (0.013 g, 78%) upon evaporation.

IR(
$$CH_2C1_2$$
): 2008 s, 1958 s
¹H(C_6D_6): 7.9-7.1 (m, Ph), 4.36 (Cp), 3.50 (d, J_{PH} = 4.39, CH)
1.56 (SMe)

The hexane-insoluble portion was recrystallized from $CH_2Cl_2-Et_20$ at -20°C, after having been washed with diethylether, to provide $\{Cp(C0)_2Fe[PPh_2(CH_2SMe)]\}CF_3S0_3, [18], (0.001 g, 5\%).$

Like n-buthyl lithium, a 10-fold excess of Et_3N also worked well for the deprotonation reaction in THF and CH_2Cl_2 at room temperature. Between 75-80% of [20] and 8-12% of [18] were isolated.

Reaction of $\{Cp(C0)_2Fe[CH(SMe)]\}CF_3S0_3, [4]$, with pyridine A sample of 0.5 ml of pyridine was added to a 10 ml CH_2Cl_2 solution of [4] (0.24 g, 0.62 mmol); a golden solution was obtained. The solution was then evaporated to dryness and washed a few times with ether to remove a trace amount of [2] leaving an oily substance. That material was allowed to recrystallize from $CH_2Cl_2-Et_20$ at -20°C for 24 hours to yield $\{Cp(C0)_2Fe[CH(SMe)(Pyr)]\}CF_3S0_3, [21]$ (0.11 g, 38%) and traces of [2], [7] and [37]. The remaining mother-liquor was then diluted with Et_20 and placed in a -20°C freezer for recrystallization. After a few days, golden plate-like crystals of [21] (0.078 g, 27%) were obtained. They are very sensitive to moisture and decompose upon prolonged exposure to light. They may be kept indefinitely at -20°C under an inert atmosphere.

Anal. Calcd.: $C_{15}H_{14}O_5S_2F_3NFe$; C: 38.71, N: 3.01, H: 3.01 Found: C: 39.47, N: 2.97, H: 3.13 $IR(CH_2Cl_2)$: 2022 s, 1974 s ¹ $H(CDCl_3)$: 9.31 (d, $J_{HH} = 5.49$); 8.30 (t, $J_{HH} = 6.96$); 7.92 (t, $J_{HH} = 6.60$) [Pyr], 6.42 (CH), 5.10 (Cp), 1.92 (SMe) ¹³ $C(CDCl_3)$: 213.6; 213.2 [CO], 143.0; 141.9; 128.2 [Pyr], 87.2 (Cp), 64.5 (CH), 19.8 (SMe) Synthesis of $\{Cp(C0)_2Fe[CH(NMe_2)]\}PF_6, [22]$ A sample of [4] (0.24 g, 0.62 mmol) was suspended in 10 ml of CH_2Cl_2 ; 15 ml of gaseous Me_2NH was bubbled into the solution via a syringe. The golden solution turned yellow-brown. The solution was diluted with 10 ml of heptane; its volume was reduced to one-half under vacuum, and the remaining solvent was decanted affording a brown residue. The product was metathesized with $(NH_4)PF_6$ in acetone, recrystallized from $CH_2Cl_2-Et_20$ at -20°C to furnish [22] (0.070 g, 30%).

> Anal. Calcd.: $C_{10}H_{12}O_2NPF_6Fe$; C: 31.68, H: 3.17, N: 3.70 Found: C: 31.68, H: 3.16, N: 3.49 $IR(CH_2Cl_2)$: 2049 s, 2005 s ¹ $H(CD_3CN)$: 10.79 (CH), 5.30 (Cp), 1.94 (d, J_{HH} = 2.6, NMe) 1.89 (d, J_{HH} = 2.2, NMe)

Synthesis of $\{Cp(C0)_2Fe[CH(NEt_2)]\}CF_3S0_3, [23]$ Diethylamine (65 µl, 0.62 mmol) was added to a rapidly-stirred CH_2Cl_2 suspension of [4] (0.24 g, 0.62 mmol) and allowed to react for 2 min. Subsequent follow-up as described previously for [22] afforded, [23], (0.079 g, 31%).

$$IR(CH_2Cl_2): 2048 \text{ s}, 2004 \text{ s}$$

$$IH(CD_3COCD_3): 11.30 \text{ (CH)}, 5.59 \text{ (Cp)}, 3.99 \text{ (q, } J_{HH} = 7.3, \text{ NCH}_2)$$

$$3.96 \text{ (q, } J_{HH} = 7.3, \text{ NCH}_2), 1.47 \text{ (t, } J_{HH} = 7.3, \text{ Me}), 1.36 \text{ (t, } J_{HH} = 7.3, \text{ Me})$$

$$III = 7.3, \text{ Me}$$

$$III = 7.3, \text{ Me}$$

Reaction of $\{Cp(C0)_2 Fe[CH(SMe)(Pyr)]\}CF_3S0_3, [21], with Et_2NH$ Diethylamine (14 µ1, 0.12 mmol) was injected into a 5 ml CH_2Cl_2 solution containing [21] (0.03 g, 0.06 mmol). Subsequently, 10 ml of heptane was added. The resulting solution was slowly evaporated under vacuum until the bulk of the CH_2Cl_2 was removed; precipitation was apparent. The rest of the heptane was decanted, leaving a pale yellow precipitate. It was then recrystallized from $CH_2Cl_2-Et_20$ at -20°C to afford [23] (0.10 g, 42%).

Synthesis of $\{Cp(C0)_2Fe[CH(NHMe)]\}PF_6, [24]$ Ten ml of gaseous methylamine was bubbled into a 10 ml CH_2Cl_2 solution containing [4] (0.24 g, 0.62 mmol). The resulting solution was stirred for 2 min and was then evaporated to dryness under reduced pressure; the remaining residue was then washed with Et_20 to remove [2], metathesized with $(NH_4)PF_6$ in acetone and recrystallized from $CH_2Cl_2-Et_20$ at -20°C to give [24] (0.063 g, 28%).

Anal. Calcd.:
$$C_9H_{10}O_2NPF_6Fe$$
: C: 29.50, N: 3.84, H: 2.74
Found: C: 29.72, N: 3.58, H: 2.75
IR(CH₂Cl₂): 2055 s, 2007 s
¹H(CD₃CN): 10.90 (NH), 10.69 (CH), 5.29 (Cp), 3.33 (d, J_{HH} =
3.3, NMe)

¹³C(CD₃CN): 238.6 (CH), 211.2 (CO), 88.6 (Cp), 45.8 (NMe)

Preparation of $\{Cp(C0)_2Fe[CH(NHCy)]\}CF_3S0_3, [25]$ To a 10 m1 CH₂Cl₂ solution of [4] (0.24 g, 0.62 mmol), cyclohexylamine (80 µl, 0.62 mmol) was added. The mixture was stirred for 2 min and was then diluted with 10 ml of heptane. After the solution volume was reduced to one-half under reduced pressure, a yellow solution containing [2], and a pale yellow precipitate were evident. The solution was decanted, and the resulting residue was washed with Et_20 and then recrystallized from $CH_2Cl_2-Et_20$ at -20°C affording pale yellow analytically pure crystals of [25] (0.094 g, 35%). This substance is stable in air and may be stored indefinitely in the dark at -20°C under N₂.

> Anal. Calcd.: $C_{15}H_{18}O_5NF_3SFe$, C: 41.20, H: 4.12, N: 3.20 Found: C: 41.23, H: 4.25, N: 3.16 $IR(CH_2CI_2)$: 2054 s, 2004 s

91

Synthesis of $\{Cp(C0)_2Fe[CD(NHCy)]\}CF_3S0_3, [26]$ A freshly prepared sample of $\{Cp(C0)_2Fe[CD(SMe]\}CF_3S0_3 (0.10 \text{ g}, 0.26 \text{ mmol}) \text{ was allowed}$ to react with 32 µl (0.26 mmol) of cyclohexylamine in 10 ml of CH_2Cl_2 . Purification as in the preceding procedure afforded [26] (0.36 g, 32%).

IR(
$$CH_2C1_2$$
): 2053 s, 2007 s
¹H(CD_2C1_2): 11.63 (br, NH), 5.25 (Cp), 3.49 (br); 1.56 (m)
[Cy]

$$^{13}C(CD_3CN): 234.5 (t, J_{CD} = 23.44, CD), 211.3 (CO), 88.8 (Cp), 69.8; 32.5; 25.3; 25.1 [Cy]$$

Synthesis of $\{Cp(C0)_2 Fe[CH(NHPr^i)]\}PF_6, [27]$ As in the preparation of [24], the reaction of i-propylamine (0.036 g, 0.62 mmol) and [4] (0.24 g, 0.62 mmol) in 10 ml of CH_2Cl_2 afforded [27] (0.074 g, 30%).

IR(CH₂Cl₂): 2053 s, 2005 s

¹H(CDC1₃): 10.85 (CH), 10.64 (NH), 5.28 (Cp), 3.89 (h, J_{HH} = 6.6, NCHMe₂), 1.38 (d, J_{HH} = 6.6, NCHMe₂)

 $\underbrace{ \text{Synthesis of } \{\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{NHBu}^{\texttt{L}})]\}\text{CF}_3\text{SO}_3, [28] } \\ \text{Analogous to} \\ \text{the preparation of } [25], \text{ the reaction of t-butylamine } (0.045 \text{ g}, 0.62 \\ \text{mmo1}) \text{ and } [4] (0.24 \text{ g}, 0.62 \text{ mmo1}) \text{ in } \text{CH}_2\text{Cl}_2 \text{ produced a } 0.15 \text{ g mixture} \\ \text{of } [28] \text{ and } (\text{NH}_3\text{Bu}^{\texttt{t}})\text{CF}_3\text{SO}_3 \text{ upon recrystallization from } \text{CH}_2\text{Cl}_2\text{-Et}_2^0 \text{ at} \\ -20^\circ\text{C}. \text{ The mixture was dissolved in 5 ml of } \text{CH}_2\text{Cl}_2, \text{ and } 100 \ \text{\mul of NaOH-} \\ \text{saturated EtOH was added. The solution was allowed to react for 2 min \\ \text{and was then pumped to dryness. The resulting residue was extracted with \\ \text{hexane to give a golden solution after it had been filtered through a \\ \text{Celite-padded frit under N}_2. \text{ The ether solution was treated with } \\ \text{CF}_3\text{SO}_3\text{H until precipitation was completed (ca. 35 \ \text{µl}). The precipitate \\ \text{was recrystallized from } \text{CH}_2\text{Cl}_2\overline{\text{Et}}_2^0 \text{ at } -20^\circ\text{C} \text{ affording analytically pure } \\ \\ \text{crystals of } [28] (0.097 \text{ g}, 38\%). \end{aligned}$

Anal. Calcd.:
$$C_{13}H_{16}O_{5}F_{3}SNFe$$
; C: 37.96, N: 3.41, H: 3.89
Found: C: 37.55, N: 3.44, H: 4.00
 $IR(CH_{2}Cl_{2})$: 2055 s, 2007 s
¹ $H(CDCl_{3})$: 10.83 (CH), 10.63 (NH), 5.27 (Cp), 1.42 (Bu)
¹³ $C(CD_{3}CN)$: 231.2 (CH), 212.5 (CO), 89.7 (Cp), 66.5 (NC),
29.0 (NCMe_{3})

Reaction of $\{Cp(C0)_2Fe[CH(SMe)(Pyr)]\}CF_3S0_3, [21], with t-BuNH_2$ A sample of t-BuNH₂ (12 µ1, 0.12 mmol) was added to [21] (0.030 g, 0.064 mmol) in 5 ml of CH₂Cl₂; the resulting solution was stirred for 10 min. The solvent was then removed under reduced pressure, and the residue was recrystallized from CH₂Cl₂-Et₂0 at -20°C to provide [28] (0.012 g, 47%).

Reaction of $\{Cp(CO)_2Fe[CH(SMe)(Pyr)]\}CF_3SO_3$ with NH₃ A 5 ml gas sample of NH₃ was bubbled slowly (ca. 30 sec) into a rapidly stirred 10 ml CH₂Cl₂ solution of [21] (0.030 g, 0.064 mmol); as soon as the addition of ammonia was completed, the solution was diluted with 10 ml of heptane. The solution volume was reduced to one-half by fast evaporation under reduced pressure. The remaining solvent was decanted, yielding a pale yellow precipitate. It was then recrystallized from $CH_2Cl_2-Et_2O$ at -20°C to give $\{Cp(CO)_2Fe[CH(NH_2)]\}CF_3SO_3,[29]$, (4 mg, 20%). It is quite stable to air and only soluble in very polar organic solvents, e.g., CH_2Cl_2 , MeCN.

> IR(CH_2CI_2): 2056 s, 2010 s ¹H(CD_3CN): 11.51 (m, NH₂), 11.30 (m, CH), 5.33 (Cp)

Preparation of $Cp(CO)_2Fe[CH(NCy)],[30]$ To a 2 ml CH_2Cl_2 solution of [25] (0.030 g, 0.069 mmol), 100 µl of NaOH-saturated EtOH was added; the light yellow solution turned gold at once. The solution was evaporated to dryness under reduced pressure; the remaining residue was extracted with hexane. The extract was then filtered through a Celitepadded frit under N_2 and pumped dry under vacuum, giving a thin yellow film of [30] (0.015 g, 78%). Compound [30] is very sensitive to air and decomposes at room temperature under N_2 when allowed to stand for a few hours to give $[Cp(C0)_2Fe]_2$ and cyclohexylisocyanide which was identified by its characteristic odor.

IR(hexane): 2030 s, 2021 s, 2013 s, 1982 sh, 1971 vs,
1963 s
¹H(CDCI₃): 10.18 (d,
$$J_{HH} = 1.79$$
, CH), 10.15 (CH), 4.90;
4.85 [Cp], 2.91 (m); 1.58 (m) [Cy]

Like the NaOH-EtOH reaction, the reaction of [25] with 50% NaHmineral oil also produced a 75% yield of [30] under similar conditions.

Preparation of $Cp(CO)_2Fe[CH(NPr^i)], [31]$ Analogous to the preparation of [30], the reaction of [27] (0.030 g, 0.076 mmol) and 100 µl of NaOH-saturated EtOH in 2 ml of CH_2Cl_2 produced [31] (0.013 g, 68%).

IR(hexane): 2028 sh, 2014 s, 1980 sh, 1971 s, 1963 s

¹H(CDC1₃): 10.21; 10.16 [d,
$$J_{HH} = 2.20$$
, CH], 4.94; 4.91 [Cp]
3.20 (m); 1.17 (d, $J_{HH} = 6.23$); 1.22 (d, $J_{HH} = 6.23$) [i-Pr]

Synthesis of $Cp(CO)_2 Fe[CH(NBu^t)], [32]$ Following the preparation of [30], [28] (0.030 g, 0.73 mmol) reacted with 100 µl of NaOH-EtOH to yield [32] (0.014 g, 76%).

Reaction of $Cp(CO)_2Fe[CH(NCy)]$ with $MeOSO_2F$ Freshly prepared [30] (0.015 g, 0.052 mmol) using the NaOH-EtOH route was dissolved in 2 ml of Et₂0. The solution was stirred vigorously and 45 µl (0.50 mmol) of $MeOSO_2F$ was injected, a pale yellow precipitate formed. The solution was carefully decanted, leaving the precipitate which was then washed with Et₂0 a few times and pumped to dryness in vacuo to furnish a E/Z mixture of {Cp(CO)₂Fe[CH(N(Me)Cy)]}SO₃F,[33], (0.010 g, 88%) with a 26:74 ratio.

> IR(CH₂Cl₂): 2049 s, 2003 s, 1998 sh ¹H(CD₃CN): 11.03; 10.84 [CH], 5.32; 5.31; 5.30 [Cp], 3.8, 1.6 [m, Cy], 3.48 (d, J_{HH} = 0.74, NMe), 3.44 (d, J_{HH} = 1.10, NMe)

When 6 eqv. of MeOSO₂F was used in the above reaction, the E/Z ratio was 83:17; it was 90:10 in the reaction with 3 eqv. of MeOSO₂F. Reaction of Cp(CO)₂Fe[CH(NPrⁱ)] with MeOSO₂F Under the condi-

tions described above, the reaction of [31] (0.013 g, 0.053 mmol) and MeOSO₂F (25 μ l, 0.30 mmol) gave a E/Z mixture of {Cp(CO)₂Fe[CH(N(Me)(Prⁱ)]}SO₃F,[34] (0.013 g, 77%) with a 62:38 ratio. Likewise, [34] was isolated in 74% yield and contained a 95:5 E/Z ratio of isomeric products when three eqv. of $MeOSO_2F$ was employed in the reaction.

IR(CH₂Cl₂): 2044 s, 2000 s
¹H(CD₃CN): 11.04; 10.83 [CH], 5.32; 5.30 [Cp], 4.20; 3.90 [h,

$$J_{HH} = 6.60, N\underline{CHMe}_2$$
], 3.45 (d, $J_{HH} = 0.73, NMe$),
3.42 (d, $J_{HH} = 0.74, NMe$), 1.36; 1.32 (d, $J_{HH} = 6.60, NCH\underline{Me}_2$

Reaction of $\{Cp(CO)_2Fe[CH(NHCy)]\}CF_3SO_3, [25], with H_2NR A 5 mg (0.01 mmol) sample of [25] was dissolved in 1 ml of <math>CH_2Cl_2$; 5 µl (0.05 mmol) of $CyNH_2$ was injected. The mixture was stirred for half an hour. After that time, the IR spectrum of the solution showed that \sim 75% of [25] had been consumed, and $Cp(CO)_2FeH$ (2010 s, 1958 vs) and NN-dicyclohexylforamidinium (1712 vs) had formed. The solvent was pumped out and the remaining solid was found to contain $[Cp(CO)_2Fe]_2$ and the organic product; this solid was extracted with Et_2O , and its mass spec. was obtained.

MS of [CyNHCHNHCy]CF₃SO₃

m/e: 209 (M = CyNHCHNHCy), 208 (M-H), 110 (M-CyNH₂)

Under the same conditions, 5 eqv. of NH_2Me also converted 75% of [25] to $Cp(CO)_2FeH$ and a mixture of $(RNHCHNHR')CF_3SO_3$, (R = Cy, Me, R' = Cy, Me), in 20 min. The $(MeNHCHNHCy)CF_3SO_3$ compound was the
major product on the basis of the mass spectrum.

MS of [CyNHCHNHMe]CF3503

m/e: 141 (M = CyNHCHNHMe), 140 (M-H), 110 (M-MeNH₂)

The reaction of t-BuNH $_2$ with [25] was noticeably slower, and 20 eqv. of the amine was needed to observe appreciable reaction.

Reaction of $\{Cp(CO)_2 Fe[CD(NHCy)]\}CF_3SO_3, [26], with NH_2Cy$ A 30 mg (0.068 mmol) sample of [26] reacted with 60 µl (0.30 mmol) of CyNH₂ in 5 ml of CH₂Cl₂. After 30 min of reaction, the solution was evaporated and the mixture was analyzed by MS; the spectrum demonstrated that the deuterium was incorporated into the foramidinium product. After MS study, the sample was allowed to react with n-BuLi in THF to afford CyNHCDNCy, whose NMR spectrum in CD₃CN showed no 7.31 δ resonance for the CHN₂ proton which was observed in the hydrogen analog.

MS for [CyNHCDNHCy]CF₃SO₃

m/e: 210 (M = CyNHCDNHCy), 209 (M-H), 111 (M-CyNH₂)

Decarbonylation of $\{Cp(C0)_2Fe[CH(NHCy)]\}CF_3S0_3$ into a 5 ml solution of [25] (0.030 g, 0.068 mmol) was injected 670 µl of a 0.123 M acetonitrile solution of Me₃NO; the pale yellow solution turned yellowred instantly. The solution was allowed to stir for an additional 10 min and was evaporated to dryness in vacuo. Extraction with CH_2Cl_2 and evaporation of the solvent gave $\{Cp(C0)(MeCN)Fe[CH(NHCy)]\}CF_3S0_3, [36],$ (0.028, 93%). A 0.10 g sample of [25] was added to a quartz tube equipped with a magnetic stir bar and a water cooling probe; then 35 ml of acetonitrile was added. The solution was irradiated with UV light at 254 nm for 2 hours at an ambient temperature which was maintained by running water through the cold finger; a brown solution was obtained. Evaporation and recrystallization from $CH_2Cl_2-Et_2O$ -hexane at -20°C afforded golden cystals of [36] (0.086 g, 85%).

Anal. Calcd.: $C_{16}H_{21}O_4N_2SF_3Fe$; C: 42.67, H: 4.67, N: 6.22 Found: C: 43.28, H: 4.70, N: 6.08 $IR(CH_2Cl_2)$: 1994 ¹ $H(CDCl_3)$: 11.84 (NH), 11.62 (CH), 4.76 (Cp), 3.56 (m); 1.88-1.26 (m) [Cy], 2,35 (Me) ¹³ $C(CDCl_3)$: 243.9 (CH), 216.1 (CO), 133.7 (CN), 83.7 (Cp), 69.1; 32.1; 24.8; 24.6 [Cy], 5.1 (Me)

Reaction of $\{Cp(C0)_2Fe[CH(SMe)]\}CF_3S0_3$ with ROH (R = Me, H) To a 5 ml CH_2Cl_2 solution of [4] (0.10 g, 0.26 mmol), 100 µl of doubly distilled-degassed H_20 was added; the solution was stirred for 10 min. During this time, MeSH liberation was evident by its odor and GC. The solvent was evaporated under reduced pressure. The resulting residue was extracted with benzene to give 28 mg (45%) of [7]. The remaining residue was found to contain 42 mg (46%) of [37]. The identical reaction was repeated and the crude mixture was analyzed by 1 H NMR. On the base of the integrated Cp resonance areas, the [7]:[37] ratio was 1:1.

A 0.10 g (0.26 mmol) sample of [4] was suspended in 1 ml of CH_2Cl_2 ; 0.83 g (26 mmol) of dry MeOH was added. The mixture was stirred for 10 min and the gas phase above the solution was withdrawn by a gas-tight syringe and injected into the GC; the presence of CO, CH_4 , MeSH and the solvent were established by comparing retention times with authentic samples. The solution was evaporated in vacuo, and the residue was dissolved in CD_3CN for ¹H NMR analysis. On the basis of the integrated Cp resonance areas, the relative concentrations of [37]:[7] were 60:40. The yield of this crude mixture was about 88%.

Reaction of $\{Cp(C0)_2Fe[CD(SMe)]\}CF_3S0_3$ with H_20 Following the procedure for the reaction of [4] and H_20 , $\{Cp(C0)_2Fe[CD(SMe)]\}CF_3S0_3$ was allowed to react with H_20 in CH_2Cl_2 for 10 min. After evaporation to dryness, the residue was extracted with benzene. A mass spectrum of this solution showed m/e fragments for $Cp(C0)_2FeCD_2SMe$ (m/e: 212 (M-C0), 184 (M-2C0)) which was the sole product.

 $\frac{\text{Reaction of } [Cp(CO)_2 \text{FeCH}(\text{SMe})] CF_3 SO_3 \text{ with } CH_2 N_2}{CH_2 Cl_2 \text{ solution containing } [4] (0.17 \text{ g}, 0.44 \text{ mmol}), anhydrous <math>CH_2 N_2$ - $Et_2 O^{55}$ was added dropwise until the evolution of N_2 ceased (ca. 1 ml). The resulting orange solution was allowed to stir for 45 min, and a yellow solution was obtained. The solvent was removed under reduced pressure, and the oily residue was then washed with $Et_2 O$. Extraction of the oil with 10 ml of $CH_2 Cl_2$, filtering the extract, and evaporating the solvent gave a yellow oil of $\{Cp(C0)_2Fe[SMe(CH=CH_2)]\}CF_3SO_3,[38],$ (0.13 g, 76%). The oil was recrystallized from dichloromethane/ethanol/ cyclohexane at room temperature for a few days, affording red needle crystals of [38] (0.02 g, 10%).

$$IR(CH_{2}CI_{2}): 2062 \text{ s}, 2019 \text{ s}$$

$$IH(CD_{3}CN): \begin{bmatrix} H_{b} & S \\ -R_{c} & -R_{c} \end{bmatrix} 6.31 \text{ (m, } H_{c}); 5.81 \text{ (m, } J_{HaHc} = 8.98, \text{ Ha}); 5.71 \text{ (m, } J_{HbHc} = 16.50, \text{ Hb}), 5.38 \text{ (Cp)}, 2.47 \text{ (SMe)}$$

¹³ $C(CD_2CI_2)$: 208.4 (CO), 130.8 (=CH), 124.1 (H₂C=), 87.7 (Cp) 25.3 (SMe)

Synthesis of $\{Cp(C0)(PPh_3)Fe[CH(SMe)]\}CF_3SO_3, [41]$ To 10 ml of a THF solution of $\{Cp(C0)(PPh_3)Fe[C(SMe)_2]\}PF_6, [39]$, (0.10 g, 0.15 mmol), (Et₃BH)Li (0.16 ml, 0.16 mmol) was added dropwise, and the mixture was allowed to react for 30 min. The solvent was then removed in vacuum, and the remaining residue was extracted with 20 ml of the mixture of hexane-diethylether (75:25) giving a yellow oil of $Cp(C0)(PPh_3)FeCH(SMe)_2, [40]$, (0.048 g, 62%) upon evaporation. Complex [40] had its v(C0) absorption at 1960 cm⁻¹ in hexane. This oily [40] was then dissolved in 5 ml of Et₂O, and 50 µl of CF₃SO₃H was injected into the solution, providing a bright yellow solution and oil. The solution was decanted, and the yellow oil was established by IR and ¹H NMR spectrum to be [41] (0.041 g, 71%). The crude substance obtained here was not readily recrystallized; it is slightly soluble in Et_2^0 and resists hydrolysis.

IR(
$$CH_2CI_2$$
): 2006
¹H(CD_3CN): 14.94 (CH), 7.4 (m, Ph), 4.84 (d, J_{PH} = 1.10, Cp),
2.99 (d, J_{PH} = 0.73, SMe)

 $\frac{\text{Synthesis of } \{Cp(CO)(P(OPh)_3)Fe[CH(SMe)]\}CF_3SO_3,[44]\}}{\text{reaction of } [39], \{Cp(CO)(P(OPh)_3)Fe[C(SMe)_2]\}PF_6,[42](0.10 g, 0.13]} \text{mmol}) \text{ reacted with } (Et_3BH)Li(0.15 ml, 0.15 mmol) \text{ to give a yellow}} \text{ oil of } Cp(CO)(P(OPh)_3)Fe[CH(SMe)_2],[43], (0.056 g, 76\%), which had a v(CO) band at 1963 in hexane. The crude [43] further reacted with CF_3SO_3H (50 µl) in 5 ml of Et_2O to provide a yellow oil of [44](0.047 g, 72\%). Although it could not be recrystallized from CH_2Cl_2-Et_2O, spectral characterization indicated that it was quite pure. Like [41], [44] is moisture-stable.$

IR(
$$CH_2CI_2$$
): 2011
¹H(CD_3CN): 14.92 (CH), 7.27 (m, Ph), 4.79 (d, J_{PH} = 1.10),
2.96 (SMe)

¹³C(CD₃CN): 320.6 (d,
$$J_{PC} = 33.21$$
, CH), 212.2 (d, $J_{PC} = 39.07$, CO), 150.5 (d, $J_{PC} = 9.7$); 130.7; 126.5;
121.0 (d, $J_{PC} = 5.85$) [Ph], 34.6 (SMe)

1 7

<u>Preparation of $\{Cp(C0)(P(0Ph)_3)Fe[CH(NEt_2)]\}CF_3S0_3,[45]</u> A freshly$ prepared sample of [44] (0.094 g, 0.14 mmol) was taken up in 10 ml of $<math>CH_2Cl_2$; Et_2NH (27 µl, 0.28 mmol) was added. After the addition of amine, 5 ml of heptane was added to the solution, and the solution volume was slowly reduced to 1/3 its original size; a pale yellow precipitate formed. The remaining solvent was carefully decanted, and the precipitate was recrystallized from $CH_2Cl_2-Et_20$ at -20°C to afford bright yellow crystals</u>

of [45] (0.054 g, 56%).

Anal. Calcd.: $C_{30}H_{31}N_{7}F_{3}PSFe$; C: 51.95, H: 4.47, N: 2.02 Found: C: 51.61, 4.41, 1.87

 $IR(CH_2CI_2): 1981$

¹H(CD₃COCD₃): 11.36 (d,
$$J_{PH} = 5.13$$
, CH), 7.41 (m, Ph), 4.82 (d,
 $J_{PH} = 1.10$, Cp), 4.11 (q, $J_{HH} = 7.33$, NCH₂), 3.89
(q, $J_{HH} = 7.33$, NCH₂), 1.44 (t, $J_{HH} = 7.33$, NCH₂Me),
1.30 (t, $J_{HH} = 7.33$, NCH₂Me)

¹³ $C(CD_3CN)$: 239.0 (d, $J_{PC} = 39.07$, CH), 216.6 (d, $J_{PC} = 41.02$, CO), 151.5 (d, $J_{PC} = 9.77$); 131.4; 127.1; 121.9 (d, 3.82) [Ph], 86.6 (Cp), 60.1; 52.1 [NCH₂], 14.8; 13.9 [NCH₂Me]

RESULTS AND DISCUSSION

The preparation of [2] was previously reported by McCormick and Angelici, ²⁷ accomplished simply by reacting $\{Cp(C0)_2Fe[C(SMe)_2]\}PF_6$, [1], with LiAlH₄ in THF (Eqn. 25).

$$[Cp(C0)_{2}Fe[C(SMe)_{2}]]PF_{6} + LIAIH_{4} \rightarrow Cp(C0)_{2}Fe[CH(SMe)_{2}]$$
 (25)
[1] [2]

Although this reaction proceeds smoothly and the yield reaches 85%, it is limited to small scale. Attempts to extend reaction 25 to larger scales were uniformally unsuccessful, and the major identifiable product is $[Cp(C0)_2Fe]_2$,[3]. Thus, alternative procedures for synthesizing [2] were sought. Bodnar and Cutler³² demonstrated that $[Et_3BH]Li$ is capable of donating hydride to $Cp(C0)_2Fe[C(Me)(OMe)]^+$ under mild conditions to furnish the ether product (Eqn. 26).

$$C_{p}(CO)(L)F_{e}[C(Me)(OMe)]^{+} + [Et_{3}BH]Li$$

 $C_{p}(CO)(L)F_{e}[CH(Me)(OMe)]$
(26)

 $L = CO, PPh_3, P(OPh)_3$

As anticipated, [1] is readily transformed to [2] in the presence of the borohydride at room temperature in a respectable 85% yield, and the reaction can easily be increased to a several gram scale (Eqn. 27).

$${Cp(C0)_{2}Fe[C(SMe)_{2}]}PF_{6} + [Et_{3}BH]Li \longrightarrow Cp(C0)_{2}Fe[CH(SMe)_{2}]$$
 (27)
[1] [2]

To our surprise, the mild hydride donating agent, $\text{Li}[(t-0Bu)_3^{A1H}]$ also works well. However, [2] prepared by this method is often contaminated with a small amount of a white inert substance which is probably an aluminum-containing material (Eqn. 28).

$$\{Cp(C0)_{2}Fe[C(SMe)_{2}]\}PF_{6} + Li[(t-OBu)_{3}A1H]$$
[1]
$$Cp(C0)_{2}Fe[CH(SMe)_{2}]$$
[2]

Nevertheless, the aluminum hydride is easier to handle and more cost effective than the borohydride, and the resulting [2] from Equation 28 is suitable for further studies.

Compound [2] is a bright yellow, air-sensitive material. It is readily dissolved in most organic solvents, and displays two strong v(c0) absorptions (2019, 1975 cm⁻¹) in hexane.

Attempted Preparation of [2]

Although [2] has been successfully prepared via the previously described methods, the overall procedure is nevertheless laborious. To improve accessibility to [2], a more direct synthetic method was desired. The reaction of $[Cp(CO)_2Fe]Na$ and $[HC(SMe)_2]PF_6$,⁵⁹ (Eqn. 29), was attempted.

$$Na[Cp(C0)_{2}Fe] + [HC(SMe)_{2}]PF_{6} \longrightarrow [Cp(C0)_{2}Fe]_{2}$$
[3] (29)

Instead of [2], [3] is the sole identifiable organometallic product. The formation of [3] is presumed to occur by oxidation of the anion, credited to its low oxidation potential.⁷⁰ That conclusion was also reached by Hartshorn et al.¹⁴ who attempted the synthesis of $\{Cp(CO)_2Fe[CH(NMe_2)]\}^+$ from $(Me_2NCH_2)CI$ and the organometallic anion. With a less reducing anion, $[Mn(CO)_5]^-$, however, approximately 5% of $(CO)_5Mn[CH(SMe)_2]$ is obtained (Eqn. 30). Although the complex has not been fully characterized, its ¹H NMR spectrum is consistent with the formulation.

$$[(CO)_{5}Mn]Na + [HC(SMe)_{2}]PF_{6} \longrightarrow (CO)_{5}Mn[CH(SMe)_{2}] + NaPF_{6} + (30)$$

 $Mn_{2}(CO)_{10}$

Synthesis of

$$\{Cp(C0)_{2}Fe[CH(SMe)]\}X, (X = CF_{3}SO_{3}, BF_{4}\}$$

Complex [2] is very sensitive to acid and readily gives the carbene, $\{Cp(C0)_2Fe[CH(SMe)]\}CF_3SO_4, [4]$, and $\{Cp(C0)_2Fe[CH(SMe)]\}BF_4, [5]$, with the liberation of MeSH, upon reaction with CF_3SO_3H and HBF_4-Et_2O , respectively in diethylether (Eqn. 31). The yields for these reactions are good.

$$Cp(CO)_{2}Fe[CH(SMe)_{2}] \xrightarrow{HX} \{Cp(CO)_{2}Fe[CH(SMe)]\}X + MeSH (31)$$
[2] X %
[4] CF_{3}SO_{3} 74
[5] BF_{4} 75

Compounds [4] and [5] are bright yellow powders which are stable to 0_2 but decompose upon exposure to moisture and gradually decompose under N_2 to an indentified dark brown substance upon exposure to light for several days. These compounds can not be isolated without being contaminated by an appreciable amount of Cp(CO)₃Fe⁺,[37]. [4] and [5] are sparingly soluble in CH₂Cl₂ and dissolve readily in polar, THF and CH₃CN, and protic, CF₃SO₃H, solvents.

Infrared spectra of [4] and [5] are similar, exhibiting two strong v(CO) absorptions in CH_2CI_2 : 2067, 2026; 2067, 2028 cm⁻¹, respectively. These bands are an average of 17 cm⁻¹ lower than those in {Cp(CO)₂Fe[CH(OMe)]}⁺, [46], ²⁴ which suggests the [CH(OMe)] moiety has a lower σ donor/ π acceptor ratio than the sulfur analog. The ¹H NMR spectrum of [4] in CD₂Cl₂ displays a broad singlet at 14.8 δ , which is characteristic of a carbene hydrogen. In triflic acid, that resonance is shifted to 15.8 δ which is nearly 3 PPM downfield from the analogous proton in [46]. This indicates an increase in cationic character on the α hydrogen of the carbene ligand going from methoxide to thiomethoxide which is in line with the trend observed in the {(PPh₃)₂(CO)(L)Os[CH(XMe)]}^{+ 19} and {Cp(PPh₃)(NO)Re[CH(XMe)]^{+ 23,26}, (X = 0, S), series.

Synthesis of

$\{Cp(C0)_{2}Fe[CH(SMe)]\}PF_{6}$

Owing to the poor crystallizabilities and stabilities of [4] and [5], the hexafluorophosphate analog was sought. Anion metathesis of [4] and [5] with $(NH_4)PF_6$ and KPF_6 only resulted in decomposition; thus, an alternative scheme was needed. The aforementioned, trityl cation is capable of abstracting an α hydride from organometallic ethers, MCHROR¹²⁴; to a lesser extent, methoxide can sometimes be removed by it.⁴⁵ Although, thiomethoxide cleavage from HC(SMe)₃ is facilitated by $(Ph_3C)BF_4$,⁵⁹ (Eqn. 32), the analogous reaction is unknown in organometallic chemistry.

$$HC(SMe)_{3} + (Ph_{3}C)BF_{4} \longrightarrow Ph_{3}CSMe + [HC(SMe)_{2}]PF_{6}$$
(32)

X	v(CO) cm ^{~1}	СН	Ср	SMe
CF ₃ SO ₃ , [4]	2067 s , 2026 s	14.86(br) ^c	5.11	3.00
BF ₄ , [5]	2067 s , 2028 s			
PF ₆ , [6]	2069 s , 2029 s	15.24(br)	5.15	3.12

Table 2. IR^a and ${}^{l}H NMR^b$ data for {Cp(CO)₂Fe[CH(SMe)]}X

^aSolvent is CH_2Cl_2 . ^bSolvent is CD_2Cl_2 . ^c15.79 in CF_3SO_3H . 109.

As hoped, $(CPh_3)PF_6$ readily reacts with [2] at -78°C affording a golden powder of [6] (75%), (Eqn. 33).

$$Cp(CO)_{2}Fe[CH(SMe)_{2}] + (Ph_{3}C)PF_{6} \longrightarrow \{Cp(CO)_{2}Fe[CH(SMe)]\}PF_{6}$$
 (33)
[2] [6]

Ph₃CSMe

Compound [6] is significantly less soluble in organic solvents than [4] and [5], and it is recrystallized from CH₂Cl₂/Et₂O at -20°C to yield golden platelets of [6] which occlude diethylether. Nevertheless, [6] shares similar spectral characteristics with [4] and [5] which are summarized in Table 2.

Direct Attempts to Prepare [6]

In light of the unsuccessful preparation of [2] in Equation 28, attention was diverted into developing a direct method for preparing [6] by avoiding [2]. Cutler²⁴ has shown that [46] can be prepared in a single step simply by reacting $Cp(CO)_2FeCH_2OMe$, [47], with trityl (Eqn. 34).

$$Cp(CO)_2FeCH_2OMe + (Ph_3C)PF_6 \longrightarrow \{Cp(CO)_2Fe[CH(OMe)]\}PF_6 + HCPh_3$$

[47] [46] (34)

When similar conditions are employed with $Cp(CO)_2FeCH_2SMe,[7],^{63}$ [6] is the only identifiable organometallic product (vide infra), but is

obtained in only approximately 5% yield (Eqn. 35).

$$Cp(CO)_{2}FeCH_{2}SMe + [Ph_{3}C]PF_{6} \longrightarrow \{Cp(CO)_{2}Fe[CH(SMe)]\}PF_{6} + [7] + [6]$$

$$''Cp(CO)_{2}FeCH_{2}'' (35)$$

The ineffectiveness of reaction 35 probably stems from the fact that the α -hydrogen in [7] is less labile than in its oxyl counterpart. That assumption is supported by the hydride transfer reactions of $Cp(PPh_3)(NO)ReCH_2^+$ and $Cp(PPh_3)(NO)ReCH_2XMe$ (X = S, 0). In this system, the thiomethoxyl complex reacts with the methylidene complex²⁶ at 83°C during 8 hours whereas the methoxylether compound²³ transfers its hydride to the methylidene compound at -70°C (Eqn. 36).

$$Cp(PPh_{3})(NO)ReCH_{2}^{+} + Cp(PPh_{3})(NO)ReCH_{2}XMe \longrightarrow Cp(PPh_{3})(NO)ReCH_{3} + {Cp(PPh_{3})(NO)Re[CH(XMe)]}^{+} (36)$$

 $X = 0, S$

Perhaps, the slower rate of α -hydride removal from MCH₂SMe compounds as compared to MCH₂OMe, results in an increase in the tendency of the trityl cation to abstract MeS⁻ rather than H⁻, giving the methylidene complex or the methylidene-MeSCPh₃ adduct⁷¹ (Eqn. 35). Since the decomposition product in Equation 35 has not been characterized, the presence of the methylidene complex or the adduct has not been verified.

Reaction of [4], [5] with Tertiary Phosphines and Phosphites

As mentioned previously, the C_{carb} of metal carbene complexes is frequently the site of nucleophilic attack. For instance, the transient complexes, (CO)₅W[CH(Ph)]⁴³ and Cp(CO)₂Fe[CH(Me)]^{+ 32} readily react with PPh₃ giving the stable phosphine adducts, (CO)₅W[CH(Ph)(PPh₃)] and $Cp(CO)_2 Fe[CH(Me)(PPh_3)]^+$, respectively. When a CH_2CI_2 suspension of [5] is treated with PPh3, the gradual dissolution of the insoluble complex is apparent. The infrared spectrum of the solution shows that [5] had been completely consumed (ca. 30 min) as indicated by the absence of its v(CO) bands. Upon recrystallization, the resulting material affords air-stable yellow crystals of {Cp(CO)₂Fe[CH(SMe)(PPh₃)] }BF4, [9a] in 86% yield. [9a] exhibits two strong v(CO) absorptions (2027, 1975 cm^{-1}) which are an average of 45 cm^{-1} lower than those in [5] (Table 2). This shift to lower energy indicates an increase of metal to CO π -backbonding. The electron density at the metal which facilitates greater backbonding is contributed by the phosphine's lone electron-pair. By comparison, it should be noted that the v(CO) bands of [9a] are about 15 cm⁻¹ higher than those found in [2]; this indicates that the positive charge is delocalized onto the iron, which reduces the degree of d-P π -backbonding from the metal to the carbonyls.

Similarly, a variety of tertiary phosphines and phosphites; MePPh₂, C1PPh₂, P(OPh)₃ and P(OCH₂)₃CMe, react with [4] and [5] to furnish the corresponding adducts (Eqn. 37, Tables 3-4). The anion of these

Complex		IR(ν(CO),	cm ⁻¹) ^a
Cp(CO) ₂ Fe[CH(SMe) ₂] ^C	[2]	2012 s	1960 s
$\{Cp(C0)_2 Fe[CH(SMe)(PPh_2Me)]\}PF_6$	[8]	2021 s	1971 s
{Cp(CO) ₂ Fe[CH(SMe)(PPh ₃)]}BF ₄	[9a]	2027 s	1975 s
{Cp(CO) ₂ Fe[CH(SMe)(PPh ₃)]}PF ₆	[9Ь]	2027 s	1975 s
{Cp(C0) ₂ Fe[CH(SMe)(PC1Ph ₂)]}BF ₄	[10]	2030 s	1982 s
{Cp(CO) ₂ Fe[CH(SMe)(PC1 ₃)]}BF ₄	[11]	2031 s	1982 s.
{Cp(CO) ₂ Fe[CH(SMe)(P(OPh) ₃)]}PF ₆	[12]	2032 s	1986 s
{Cp(C0) ₂ Fe[CH(SMe)(P(OCH ₂) ₃ CMe)]}CF ₃ S0 ₃	[13a]	2041 s	1992 s
{Cp(CO) ₂ Fe[CH(SMe)(P(OCH ₂) ₃ CMe)]}PF ₆	[13 b]	2042 s	1992 s

Table 3. Selected IR and ${}^{1}H$ NMR data for the phosphine adducts, Cp(CO)₂Fe[CH(SMe)L]⁺

^aCH₂C1₂, ^bCD₃CN. ^cIn hexane (2018 s, 1968 s).

	1 _H	NMR ^b	
Ср	СН	CH SMe Ot	
5.16	3.75(d, J _{PH} =2.93)	1.36(d, J _{PH} =0.73)	7.7(m, Ph), 2.45(d, J _{PH} =12.46, PMe)
5.25	4.28(d, J _{PH} =1.46)	1.67(d, J _{PH} =0.74)	7.35(m, Ph)
5.21	4.16(d, J _{PH} =11.73)) 1.65	7.7(m, Ph)
5.25	3.41(d, J _{PH} =7.33)	2.12(d, J _{PH} =1.71)	7.35(m, Ph)
5.13	2.67(d, J _{PH} =2.44)	2.22	4.74(d, J _{PH} =5.37, OCH ₂), 0.94(CMe)

Complex	CO	Cp	SMe
[8]	214.5	89.3	22.5
		90.7	· 02 0
[96]	215.5(d, J _{PC} =5.86), 213.0	89.7	23.2
[10]	214.4(d, J _{PC} =5.86), 213.2	89.3	22.7
[12]	214.5, 213.6	88.1	20.5
[13b]	214.0(d, J _{PC} =3.66), 213.1	87.4	23.5

Table 4.	¹³ C NMR data 1	for Cp(CO) ₂ Fe[CH(SMe)L] ⁺	in CD_CN solvent
----------	----------------------------	---	------------------

^acd₃cocd₃

СН	Other
	134.7(d, J _{PC} =3.9); 133-130; 127.7; 126.6; 124.3; 123.2[Ph]
7.5(d, J _{PC} =25.4)	5.4(d, J _{PC} =11.72, PMe)
6.0(d, J _{PC} =25.39)	135.1(d, J _{PH} =7.81); 130.5(d, J _{PH} =11.72); 125.7; 122.0[Ph]
2.7(d, J _{PC} =15.62)	136.3; 134.0; 133.6; 126.5; 122.7[Ph]
0.8(d, J _{PC} =130.86) ^a	150.7(d, J _{PC} =13.68); 131.7; 128.3(d, J _{PC} =3.90); 120.6[Ph]
5.1(d, J _{PC} =101.32)	80.7(d, J _{PC} =6.1, OCH ₂), 36.3(d, J _{PC} =34.2, <u>C</u> Me), 13.0(C <u>M</u> e)

compounds can be readily metathesized with PF_6 to give a more managable product. Astonishingly, the weak Lewis acid, PCl_3 , also gives the corresponding adduct

$$\{Cp(CO)_{2}Fe[CH(SMe)]\}X \xrightarrow{L} \{Cp(CO)_{2}Fe[CH(SMe)(L)]\}X$$

$$[4]$$

$$X = CF_{3}SO_{3}, BF_{4}$$

$$L = PPh_{3}, MePPh_{2}, C1PPh_{2}, PC1_{3}, P(OPh)_{3}, P(OCH_{2})_{3}CMe$$

$$(37)$$

in solution when reacted with [5], but it could not be isolated in pure form without undergoing some decomposition. [4] fails to produce stable adducts with CH_3CN , THF, Me_2S , or $AsPh_3$.

Spectral Properties of the $Cp(CO)_{2}Fe[CH(SMe)(L)]^{+}$ Complexes

Uniformally, the ¹H NMR resonance of the methine hydrogen of these adducts (Table 3) is shifted upfield, as much as 12 PPM, from the parent carbene complex, which is in the range of a saturated iron alkyl complex, such as [2].²⁷ Invariably, the methine carbon in these complexes occurs as a doublet in the ¹³C NMR spectrum due to coupling with the phosphorous (³¹P I = $\frac{1}{2}$); the chemical shift of the methine carbon is in the range of -5 to 12 PPM, as compared with -23.3 PPM. observed in [Cp(CO)₂FeCH₂PPh₃]BF₄.⁷²

In the carbonyl region (Table 4), the majority of these adducts display three-line patterns for the CO groups as exemplified by [13b]

in Figure 2. This phenomenon can be explained by diastereotopism, which has been cited in $Cp(CO)_2 Fe[CH(OMe)(Me)]$.⁴⁹ As a consequence of the nucleophilic attack by phosphorous on the C_{carb} , the resulting methine carbon becomes an optically active center, the complex can exist in several rotomeric forms with the staggered rotomers, whose Newman projections are shown in Figure 3, being the most likely structures for each enantiomer.

Figure 3. Newman projections for Cp(CO)₂FeCHPS

In all of the rotomers in Figure 3, the carbonyls are clearly chemically and magnetically non-equivalent with respect to the phosphorus; thus, the CO groups should have different chemical shifts and coupling constants with the P. Presumably, rotation about the Fe-C bond is rapid relative to the NMR time scale even at the ambient probe temperature at which the data in Table 4 were obtained. Consequently, the carbonyl pattern is the average of the various rotomers and occurs as a doublet and singlet, arising from different J_{PC} values. The chiral-methine carbon also induces diastereotopism in PPh₂Me adduct, [8], whose ¹³C spectrum shows two sets of phenyl carbon resonances, though, its carbonyl signals are observed to be coincident.

X-Ray Structure of [13b]

To ensure that the ylide moiety, $[CH(SMe)(PR_3)]$, was bonded to the iron through the methine carbon rather than the sulfur, an X-ray crystal determination was undertaken on [13b]. As illustrated in the ORTEP drawing of the organometallic cation portion (Figure 4), the iron remains connected to the formerly carbene carbon, C1. The overall molecular configuration of the cation is a three-legged piano-stool structure where the carbonyls and C1 are the legs. The angles between the legs average 91.6° (Table 5) which is slightly greater than in a regular octahedral complex (90°). To our surprise, a Newman projection through the C1-Fe bond of the organometallic cation reveals that the complex adopts the most sterically hindered staggered rotomer, that in which both bulky groups, S and P, are adjacent to the Cp (Figure 5). It is not clear why this is the case; presumably, it is preferred due to favorable packing in the lattice.

In general, Fe-C single bond distances in $Cp(CO)_2$ Fe-R complexes⁷³⁻⁷⁸ are in the range of 2.06-2.11 Å. In the case of [13b], the Fe-Cl bond length is 2.08 Å (Table 6) which is longer than the partial double bond observed in $Cp(CO)_2$ Fe[CH₂(SMe₂)]⁺ (2.036)⁷¹ and is in close accord with that (2.11 Å) of the single bond complex, $Cp(CO)_2$ Fe[C(SMe)₃].⁷³ The Fe-CO (1.78 average) and FeC-O (1.14 average) distances in [13b] are longer and shorter, respectively, relative to the corresponding distances (1.76, 1.15) in $Cp(CO)_2$ Fe[C(SMe)₃], although the differences in bond distances are within experimental error. However, the v(CO)

120

Torsion angles (deg) C_7 -Fe-C₁-H₁ 43.42 C_7 -Fe-C₁-P₁ 157.37 C_7 -Fe-C₁-S 77.18 C_8 -Fe-C₁-S 171.52 C_8 -Fe-C₁-P₁ 63.03 C_8 -Fe-C₁-H₁ 50.91

Figure 5. A Newman projection of the CpC₂FeCHSP core viewing through the C₁-Fe bond

 Fe-C7-04	176.7(1.1)	P ₁ -0 ₃ -C ₄	112.7(6)
Fe-C8-05	175.7(1.0)	0 ₁ -P ₁ -0 ₂	106.7(4)
C8-Fe-C7	94.5(5)	0 ₂ -P ₁ -0 ₃	105.2(4)
C ₁ -Fe-C ₇	87.5(4)	⁰ 3 ^{-P} 1 ⁻⁰ 1	104.8(4)
C ₁ -Fe-C ₈	92.9(4)	0 ₁ -C ₂ -C ₅	107.3(8)
Fe-C ₁ -H1	97.2(6)	⁰ 2 ^{-C} 3 ^{-C} 5	107.8(8)
Fe-C ₁ -S	110.9(4)	0 ₃ -c ₄ -c ₅	109.0(9)
Fe-C ₁ -P ₁	112.8(4)	^c 2 ^{-c} 5 ^{-c} 3	108.4(8)
H ₁ -C ₁ -S	115.3(6)	^c 3-c ⁵ -c ⁴	108.6(9)
H _J -C _J -P _J	108.8(6)	c ₄ -c ₅ -c ₂	112.3(9)
S-C1-P1	111.14(5)	^c 2 ^{-c} 5 ^{-c} 6	110.1(9)
c ₁₄ -s-c ₁	103.0(5)	^c 3-c ² -c ⁶	107.5(8)
C ¹ -b ¹ -0 ¹	113.6(4)	c ₄ -c ₅ -c ₆	110.0(9)
C ₁ -P ₁ -O ₃	113.4(4)	°9-°10-°11	109.3(1.0)
^C 1 ^{-P} 1 ⁻⁰ 2	112.5(4)	C ₁₀ -C ₁₁ -C ₁₂	108.7(1.0)
P ₁ -0 ₁ -C ₂	114.9(6)	C ₁₁ -C ₁₂ -C ₁₃	104.5(9)
P ₁ -0 ₂ -C ₃	114.9(6)	^C 12 ^{-C} 13 ^{-C} 9	108.5(1.1)
^C 13 ^{-C} 9 ^{-C} 10	109.0(1.0)	F4-P2-F5	175.9(9)
F ₁ -P ₂ -F ₂	178.2(6)	F3 ^{-P} 2 ^{-F} 6	172.8(9)
F2-P2-F3	88.4(5)	F3 ^{-P} 2 ^{-F} 4	83.5(7)
F5-P2-F6	94.8(1.0)	F6-P2-F1	89.6(7)

Table 5. Bond angles (deg) and their standard deviations (in parentheses) for $\{Cp(C0)_2Fe[CH(SMe)(P(0CH_2)_3^{CMe})]\}PF_6$

Fe-C ₁	2.085(9)	°1-°2	1.49(1)
^{Fe-C} 7	1.78(1)	°2 ^{-°} 3	1.48(1)
Fe-C ₈	1.78(1)	0 ₃ -c ₄	1.53(1)
Fe-C ₉	2.13(1)	°2-°5	1.54(1)
Fe-C ₁₀	2.11(1)	°3-°5	1.57(1)
Fe-C ₁₁	2.08(1)	C ₄ -C ₅	1.51(1)
Fe-C ₁₂	2.12(1)	°5-°6	1.55(1)
Fe-C ₁₃	2.16(1)	₉ -c10	1.41(1)
°7 ⁻⁰ 4	1.13(1)	c ₁₀ -c ₁₁	1.37(1)
°8-05	1.14(1)	°11 ^{-°} 12	1.47(2)
c _l -s	1.809(9)	^C 12 ^{-C} 13	1.46(2)
С,-Н,	1.054(9)	^c 13 ^{-c} 9	1.39(1)
C ₁ -P1	1.732(9)	P2-F1	1.60(1)
s-c ₁₄	1.82(1)	P2-F2	1.593(9)
P1-01	1.551(6)	P2-F3	1.55(1)
P1 ⁻⁰ 2	1.547(7)	P2-F4	1.62(1)
P1-03	1.544(7)	P2-F5	1.47(1)
		Po-Fc	1.52(1)

Table 6. Interatomic distances (A) and their estimated standard deviations (in parentheses) for $\{Cp(CO), Fe[CH(SMe) (P(OCH_2), CMe)\}\}PF_6$

absorptions of $[13b] (2042, 1992 \text{ cm}^{-1})$ are noticeably higher energy than those of $\text{Cp(CO)}_2\text{Fe}[\text{C(SMe)}_3](2013, 1964 \text{ cm}^{-1})$. Thus, on the basis of the X-ray results together with IR data, it appears there is less d-p π -backbonding to the CO groups in [13b]. The Cl-S bond (1.809) is found to be in good agreement with a typical C-S single bond distance observed in $\text{Cp(CO)}_2\text{Fe}[\text{C(SMe)}_3]$ (1.809) and compares favorably with the values obtained from microwave studies of MeSH (1.819),⁷⁹ and Me₂S (1.802).⁸⁰

The P1-C1 bond distance (1.732 Å) is in close accord with those in the terminal carbene phosphine adducts: $Me_3AuCH_2PPh_3$ (1.755 Å)⁸¹, (CO)₃Ni[CH(Me)PCy₃]⁸² (1.745 Å), trans [Pt(CH₂PEt₃)1(PEt₃)₂]⁺ (1.77 Å)⁸³ and {(1,5-C₈H₁₂)Pd[CH(SiMe₃)PPhMe₂](SiMe₃)(C1)]⁺ (1.780 Å)⁸⁴; but is noticeably longer than those in the ylides, (CO)₅W[SMe(C(SMe)PPh₂Me)](1.704)⁸⁵ and Cp₂ClZr[CH(PFh₃)] (1.716).⁸⁶ Thus, the P1-C1 bond may be considered a single bond.

Thermal Decomposition of [9a] and [13b]

Recently, in the course of studying the electrophilicity of [1] toward tertiary phosphines, Angelici and Matachek⁸⁷ observed the formation of $\{Cp(C0)_2Fe[C(SMe)_2PEt_3]\}PF_6$ when the carbene reacted with PEt_3 at -78°C (Eqn. 38).

This triethylphosphine adduct was described as having spectral properties similar to those of the compound in Tables 3-4. However, it was not isolated due to its inherent instability and decomposed to $[Cp(CO)_2Fe(PEt_3)]PF_6$ upon warming to 0°, and the remaining carbene fragment may have dimerized to give the tetrathiomethyoxyl ethylene.

To evaluate the generality of this degradation reaction, the thermal stabilities of the $3^{\circ}PR_{3}^{\circ}$ adducts, [9a] and [13b] were investigated. In contrast to the PEt₃ adduct, both complexes remain unaltered in refluxing $CH_{2}Cl_{2}$ and THF for two hours and maintain their structural integrities even when heated at 100°C in the solid state under an N_{2}° atmosphere for 15 min. When solid [9a] and [13b] are heated for 2 min at 200 and 180°C, respectively, decomposition occurs, affording $[Cp(CO)_{2}FePPh_{3}]BF_{4}$ (88%) and $[Cp(CO)_{2}FeP(0CH_{2})_{3}CMe]PF_{6}$ (65%), respectively (Eqn. 39).

$$\{Cp(CO)_{2}Fe[CH(SMe)L]\}^{+} \xrightarrow{\Delta} Cp(CO)_{2}L^{+} + cis and trans (MeS)CH=CH(SMe)$$

+ HC(SMe)_{3} + Cp_{2}Fe (39)
L = PPh_{3}, P(OCH_{2})_{3}CMe

Both organometallic products were identified by comparing their spectral data with authentic samples synthesized from the reaction of $[Cp(CO)_2FeTHF]^+$ and L.⁶⁹ The organic products separated from the pyrolysis reaction of [9a] were identified by their GC-MS spectra to be cis and trans 1,2 bis(methylthio)ethylene in about equal proportions, trithiomethoxyl methane, and ferrocene. Undoubtedly, the olefins are derived from the coupling of "CH(SMe)" fragments; whether this coupling involves free carbene or coordinated carbene ligand is unknown, but certain thioalkoxyl carbenes have been shown to produce olefins under the proper conditions (Eqn. 40), and carbene complexes are also known to release the carbene as an olefin-product (Eqn. 41-43).

$$2 \xrightarrow{\text{PhS}} (\text{PhS})_2 C = C(\text{SPh})_2^{88}$$

$$(40)$$

$$2\{Cp(C0)_{2}Fe[CHPh]\}^{+} \longrightarrow (Ph)CH=CH(Ph)^{45}$$
 (41)

$$(CO)_5 W[C(Ph)OMe] + Ph_3 P=CH_2 \longrightarrow W(CO)_5 PPh_3 + (Ph)(MeO)C=CH_2^{89}$$
 (42)

$$C1_2PPh_3PtCH_2PPh_3 \xrightarrow{hv} C1_2Pt(PPh_3)_2 + "CH_2"^{90}$$
 (43)

Reaction of [4]

with Secondary Phosphines

The reaction between secondary phosphines and transition metal carbene complexes is similar to those of tertiary phosphines, but with a slight variation. Kreissel et al.⁹¹ observed that Me_2PH readily reacted with (CO)₅Cr[C(OMe)(Ph)] to give (CO)₅Cr[C(OMe)(Ph)PMe_2H]. Upon stirring the adduct in acetone, rearrangement occurred affording a phosphine coordinated complex (Eqn. 44).

$$(C0)_{5}Cr[C(OMe)(Ph)] + Me_{2}PH \xrightarrow{Pentane} (C0)_{5}Cr - C - Ph$$

$$HPMe_{2}$$

$$acetone$$

$$(C0)_{5}Cr[P(Me)_{2}[CH(Ph)OMe]]$$

$$(44)$$

More recently, Pickering et al. ⁸⁵ observed a similar rearrangement in the reaction of $(CO)_5 W[C(SMe)_2]$ and $Ph_2 PH$. In that case, the phosphine complex was isolated and the phosphine adduct was presumed to be an intermediate, although there was no spectroscopic evidence for it (Eqn. 45).

$$(CO)_{5}W[C(SMe)_{2}] + PPh_{2}H \longrightarrow [(CO)_{5}W - C - SMe] \longrightarrow (CO)_{5}W[PPh_{2}CH(SMe)_{2}]$$

$$HPPh_{2} \qquad (45)$$

Complex		IR((CO),	cm ⁻¹) ^a
{Cp(C0) ₂ Fe[CH(SMe)(PPh ₂ H)]}CF ₃ SO ₃	[14]	2033 s	1980 s
{Cp(CO) ₂ Fe[CH(SMe)(PCy ₂ H)]}CF ₃ SO ₃	[15]	2025 s	1975 s
{Cp(C0) ₂ Fe[CH(SMe)(PPhH ₂)]}CF ₃ S0 ₃	[16]	2036 s	1987 s
{Cp(CO) ₂ Fe[CH(SMe)(PCyH ₂)]}PF ₆	[17]	2036 s	1986 s
{Cp(C0) ₂ Fe(PPh ₂ CH ₂ SMe) }CF ₃ S0 ₃	[18]	2057 s	2012 s
{Cp(CO) ₂ Fe(PCy ₂ CH ₂ SMe)]}CF ₃ SO ₃	[19]	2049 s	2005 [°] s
Cp(CO) ₂ Fe[CH(SMe)PPh ₂]	[20]	2008 s	1958 s
acH,cl,.			<u></u>
^b cd ₃ cn.			
^c cDC1 ₃ .			
^d CD ₃ NO ₂ .			
^e c ₆ D ₆ .			

•

.

Table 7. Selected IR and 1 H NMR data for the primary and secondary phosphine adducts, Cp(CO)₂Fe[CH(SMe)L]⁺ and their derivative

	1 _{H NMR}	
Ср	СН	SMe
5.14 ^b	3.46(dd, J _{PH} =1.47, J _{HH} =10.63)	1.59(d, J _{PH} =0.73)
5.16 ^b	3.18(dd, J _{PH} =1.47, J _{HH} =2.93)	2.21(d, J _{PH} =1.10)
5.18 ^b	3.06(dd, J _{PH} =1.28, J _{HH} =9.9)	1.79
5.15 ^c	2.87(dm, J _{PH} =7.7)	2.29
5.38(d, J _{PH} =1.46) ^d		1.99(d, J _{PH} =1.46)
5.41(d, J _{PH} =1.47) ^b		2.32(d, J _{PH} =1.84)
4.36 ^e	3.50(d, J _{PH} =4.39)	1.56

•

Table 7. continued

Other

7.22(m, Ph) 7.45(dd, $J_{PH}=501.31$, $J_{HH}=10.63$, PH) 1.83(m, Cy), 5.78(dm, $J_{PH}=439$, PH) 7.25(dm, $J_{PH}=482.02$); 6.98(dm, $J_{PH}=502.18$)[PH], 7.7(m, Ph) 1.90-1.4.(m, Cy), 6.16(dm, $J_{PH}=470.84$); 5.83(dm, $J_{PH}=472.29$)[PH] 3.82(d, $J_{PH}=6.1$, SCH₂), 7.7(m, Ph) 3.21(d, $J_{PH}=9.53$, SCH₂), 1.83(m, Cy) 7.91-7.1(m, Ph)

Complex	CO	Ср	SMe
[14] ^a	214.9(d, J _{PC} =5.86), 213.8	88.5	23.3
[15] ^b	216.2(br), 215.0	89.2	23.3
[16] ^d	213.3(br), 212.3 ^e	87.6	22.2
[17] ^b	214.2(d, J _{PC} =5.86), 213.8	87.6	22.4
acD_N0	· · · · · · · · · · · · · · · · · · ·		<u></u>

Table 8. ¹³C NMR data for the primary and secondary phosphine adducts, $Cp(CO)_2Fe[CH(SMe)L]^+$ and their derivatives

CD ₃ NO ₂ .
^b cd ₃ cn.
^c cdc1 ₃ .
dcd3cocd3
^e CD ₂ Cl ₂ .

СН	Other
5.6(d, J _{PC} =21.49)	135-130 (Ph)
-1.3(d, J _{PC} =19.53) ^c	34-26 (Cy)
1.5(d, J _{PC} =11.72)	135-130(Ph)
-4.3(d, J _{PC} =19.53)	31.8(d, J _{PH} =37.11); 28.3; 26.5; 25.9[Cy]

133

10 de
The addition of HPPh₂ or HPCy₂ to a dichloromethane solution of [4] at room temperature, results in the isolation of air-stable phosphine adducts in fair yields, $\{Cp(C0)_2Fe[CH(SMe)PPh_2H]\}CF_3S0_3, [14]$, and $\{Cp(C0)_2Fe[CH(SMe)PCy_2H]\}CF_3S0_3, [15]$, respectively (Eqn. 46).

The J_{PH} coupling constants for [14] and [15] are 501 and 439 Hz, respectively, and are consistent with the hydrogen atom being bound to the phosphorus.⁹² Both complexes have spectral characteristics (Tables 7-8) similar to those of 3° phosphine adducts.

In contrast to $(CO)_5 Cr[C(OMe)(Ph)(PMe_2H)],[14]$ is stable in acetone for a period of 12 hours, and shows no noticeable decomposition in refluxing CH_2Cl_2 and THF for 2 hours. However, it undergoes hydrogen migration when heated at 168°C in the solid state to yield $\{Cp(CO)_2Fe[PPh_2(CH_2SMe)]\}CF_3SO_3,[18]$ (Eqn. 47). Much of the material obtained from the pyrolysis reaction is insoluble in common organic solvents and is believed to be a decomposition product of [14]. Likewise [15] is converted into $\{Cp(CO)_2Fe[PCy_2(CH_2SMe)\}CF_3SO_3,[19],$ at elevated temperatures (Eqn. 47).

$$\begin{bmatrix} C_{P}(C0)_{2}Fe - C - H \\ HPR_{2} \end{bmatrix} CF_{3}SO_{3} \xrightarrow{\Delta} [C_{P}(C0)_{2}FePR_{2}(CH_{2}SMe)]CF_{3}SO_{3}$$
(47)

$$R \quad ^{\circ}C \quad %$$
[18] Ph 168 20
[19] Cy 200 20

IR spectra of these products show two strong v(CO) bands in the regions where $Cp(CO)_2FePR_3^+$ complexes $absorb^{68}$ (Table 7). In the proton NMR spectrum, the PH signal is no longer present and a new resonance appears with a J_{PCH} (<10 Hz) coupling constant, which is consistent with the expected value (0.5-20 Hz)⁹² for phosphines of the type R_2PCH_2R' .

A possible mechanism for reaction 47 is one that suggested for reaction 45.⁹³ Thus, the thioether group migrates to the iron and coordinates by lone pair donation from the sulfur giving a phosphorane complex (Scheme 1). Subsequent proton migration from the P to the C atom followed by phosphine displacement of the sulfur furnishes the observed product.

In an effort to determine the validity of Scheme 1, thermolysis of [14] was carried out at lower temperatures, in the hope of detecting the presence of the postulated intermediate sulfur-coordinated complexes. However, at 150-160°, no reaction takes place (vide infra). Thus, the sulfur coordinated intermediates must be short-lived at

168°, which is the minimum reaction temperature. Conceivably, the rearrangement reaction could proceed by an entirely different mechanism, in which sulfur-bound complexes are not involved.

Alternatively, reaction 47 could be base catalyzed, where removal of the phosphonium hydrogen of the adduct is the initial step. The base involved in the deprotonation perhaps is PHR_2 which is derived from decomposition of the adduct (Scheme 2). Following attack on the iron by the resulting phosphine, reprotonation of the ylide with the conjugate acid or a H⁺ donor, such as the adduct, would give the observed product.

In the course of these investigations, [14] was found to be deprotonated by n-BuLi in THF or Et_3^N in $\text{CH}_2^{Cl}_2$ to yield mainly $\text{Cp}(\text{CO})_2\text{Fe}[\text{CH}(\text{SMe})\text{PPh}_2]$, [20], and 5-12% of the rearranged complex, [18]. However, when 1/3 eqv. of base is used, a mixture consisting of [14], [18] and [20] results and [20] is only a minor product (Eqn. 48).

$$Cp(CO)_{2}Fe[CH(SMe)(PPh_{2}H]CF_{3}SO_{3} < \underbrace{base}_{HO_{3}SCF_{3}}$$
[14]
(48)

{ $Cp(C0)_{2}Fe[PPh_{2}CH_{2}SMe]$ } CF $_{3}SO_{3} + Cp(C0)_{2}Fe[CH(SMe)PPh_{2}]$ [18] [20]

base: η-BuLi/THF; Et₃N/CH₂Cl₂

$$Fe = Cp(CO)_{2}Fe$$

B'=base

Scheme 2

These experiments suggest the rearrangement of [14] to [18] is probably base influenced and the reaction is not catalytic, at least under the conditions in Equation 48.

Under pyrolytic conditions, the base involved in inducing the rearrangement reaction could be PR_2H which is generated by dissociation from the adduct $Cp(CO)_2Fe[CH(SMe)L]^+$. Indeed, a 5:1 mixture of neat [15]:PCy₂H gives [19] and a monocarbonyl complex, based on the single v(CO) band (1965 cm⁻¹) and apparent liberation of CO during the reaction, (vide infra), at a considerably lower temperature (150°C) (Eqn. 49). However, a 5:1 mixture of [14]/Ph₂PH produces mostly a CO substituted product at 100°C.

$$\{Cp(C0)_{2}Fe[CH(SMe)PCy_{2}H]\}CF_{3}SO_{3} \xrightarrow{150^{\circ}} NR$$

$$[15] \qquad 5 eqv.$$

$$PCy_{2}H \qquad \{Cp(C0)_{2}Fe[PCy_{2}(CH_{2}SMe)]\}CF_{3}SO_{3}$$

$$[19]$$

$$[19]$$

Evidently, the Et_3^N , n-BuLi and PCy₂H bases assist the rearrangement reaction; thus, Scheme 2 could be a viable alternative mechanism and deserves special attention in future work.

Preparation of [20]

The phosphonium proton in [14] is readily removed by n-BuLi at -78°C to give [20] predominantly; the reaction may be reversed by adding CF_3SO_3H (Eqn. 48). An Et_2O solution of [20] decomposes slowly in air. Attempts to crystallize [20] from $Et_2^{0/pentane}$ at $-78^{\circ}C$ only resulted in decomposition. In several instances, an Et_2^{0} extract consisting of [20] decomposed to [18] and a deep-red unidentified material, when filtered through a frit under an N₂ atmosphere. This decomposition reaction is not well-understood and seldom reproducible. A closer examination of reaction 48 reveals that it also provides a small amount of [18] (5%). When the reaction is carried out at room temperature, the yield of [18] increases to 10%. Similarly, Et_3^N reacts with [14] in $CH_2^{C1}_2$ at ambient temperature to produce [20] and 10% of [18] (Eqn. 48).

Complex [20] can be methylated (Eqn. 50) with $MeOSO_2F$ to furnish $\{Cp(CO)_2Fe[CH(SMe)(PPh_2Me)]\}SO_3F$ whose spectral properties are very similar to those of [8] which was synthesized by an independent route (Eqn. 37). Upon metathesis with $[NH_4]PF_6$ in acetone, it is converted to [8] and the overall yield is 82%.

$$C_{p}(CO)_{2} F_{e}[CH(SMe)(PPh_{2})] \xrightarrow{MeOSO_{2}F} \{C_{p}(CO)_{2}F_{e}[CH(SMe)(PPh_{2}Me)]\}SO_{3}F$$

$$[20]$$

$$[NH_{4}]PF_{6}$$

$$[8]$$

$$(50)$$

Attempts to obtain a phosphino carbene complex, $Cp(CO)_2Fe[CH(PPh_2)]^+$, by reacting [20] with AgBF₄ in the hope that Ag⁺ ion would abstract MeS⁻ from the organometallic complex only led to an unisoluble material with v(CO) absorptions (2027, 1976 cm⁻¹) which are probably not those of the expected product. Addition of anhydrous $[Ph_3^C]BF_4$ to a $CH_2^{Cl}_2$ solution of [20] at room temperature produces no apparent reaction.

Reaction of [4] with Primary

Phosphines

Analogous to the reaction of secondary phosphines, PhPH₂ and $CyPH_2$ also react with [4] to give $\{Cp(CO)_2Fe[CH(SMe)(PPHH_2)]\}CF_3SO_3$, [16] and $\{Cp(CO)_2Fe[CH(SMe)(PCyH_2)]\}PF_6$, [17], (after metathesis with KPF₆ in CH_3CN) respectively (Eqn. 51). The ³¹P NMR spectrum of [17] displays a deceptive triplet and the J_{PH} coupling constant (470 Hz) is consistent with the formulation in which both hydrogen atoms remain on the phosphorus.⁹² Moreover, the phosphonium hydrogens of [16] and [17] are shown by ¹H NMR to be diastereotopic, because of the adjacent chiral methine carbon which was illustrated in Figure 3 earlier. IR and ¹³C NMR spectra of these complexes are similar to those of the 2° phosphine adducts; these spectral data are summarized in Tables 7-8.

Like their secondary phosphine analogs, [16] and [17] seem to rearrange at 160°C in the solid state based on IR spectra (2058, 2015;

2058, 2012 cm⁻¹, respectively) of the reaction mixture. However, ¹H NMR spectra of these reaction products indicate them to be mixtures, and they have not yet been positively identified.

Reaction of [4] with Pyridine

Much attention has been paid to the reactivity of carbene complexes with 3° phosphines and phosphites; the analogous reactions with tertiary amines are seldom reported. Kreissel et al.⁹⁴ reported the preparation of a nitrogen adduct by reacting $(CO)_5 Cr[C(OMe)Ph]$ and Dabco (Eqn. 52). A similar reaction was also observed between quinuclidine and $(CO)_5 W[C(OMe)Ph]$.⁹⁵ Recently, Tam et al.²³ obtained $Cp(PPh_3)(NO)Re[CH_2Pyr]^+$ from the reaction of the methylidene complex with pyridine.

$$(c_0)_5 c_r = c_{Ph}^{OMe} + N(c_{H_2})_3 N \longrightarrow (c_0)_5 c_r - c_{Ph}^{OMe}$$
 (52)

McCormick et al.⁷³ observed the disproportionation of [1] when it was treated with a variety of tertiary amines; an amino adduct was proposed as the key intermediate (Eqn. 53).

$$C_{p}(CO)_{2}Fe[C(SMe)_{2}]^{+} + R_{3}N \longrightarrow \left[C_{p}(CO)_{2}Fe - C - SMe\right]^{+}$$

$$[1]$$

$$VR_{3}$$

$$C_{p}(CO)_{2}FeC(SMe)_{2} + ?$$

$$(53)$$

Although, [4] does not appear to react with Dabco, at least to an appreciable extent, it smoothly reacts with pyridine to afford a bright-yellow solid upon recrystallization. Spectral data suggest that this modestly moisture-sensitive material is $\{Cp(CO)_2Fe[CH(SMe)(Pyr)]\}CF_3SO_3, [21] (Eqn. 54)$. Compound [21] is hydrolyzed in wet organic solvent to [7] and [37]. The pathway which leads to the formation of these products is probably similar to that for the reaction of [4] and H_2O ; a more detailed discussion is deferred to a later section.

As in reaction 53, [21] decomposes slowly at room temperature in the solid state or dried solvents to give mainly [2]. Since the process is rather slow, [21] may be stored indefinitely under an N₂ atmosphere at -20°C.

The infrared spectrum (Table 9) of [21] in CH_2CI_2 displays two

strong v(C0) absorptions (2022, 1974 cm⁻¹) which are in the region characteristic of the PR₃ adducts (Table 3). The methine, FeCH, proton resonance is at 6.5 δ (Table 9) which is noticeably more deshielded than the corresponding signal in the PR₃ adducts (Table 3). The same trend is also observed in the ¹³C NMR spectrum (Table 10) where the FeCH carbon is found at 64.5 PPM, which is at least 51 PPM downfield from those of the phosphine and phosphite adducts (Table 4). These observations suggest that [21] is more electrophilic and should be more susceptible to nucleophilic attack than the phosphorus analogs. That notion is supported by the reaction of [21] with H₂O (Eqn. 54), whereas [8] and [13b] tolerate H₂O.

Chemical Reactivity of [21]

Besides reacting with water, [21] also reacts smoothly with various organic nucleophiles which have proven to be effective in reactions with the parent compound, [4]; however, the reactions with [21] are slower than those with [4]. [21] reacts with 2 eqv. of diethylamine and t-butylamine to afford $\{Cp(C0)_2Fe[CH(NEt_2)]\}CF_3S0_3,[23],$ and $\{Cp(C0)_2Fe[CH(NHBu^t)]\}CF_3S0_3,[28]$, respectively (Eqn. 55, Tables 9-10). Frequently, these reactions produce slightly higher yields of the desired products and lesser amounts of [2] (10%). In contrast, [2] is one of the major products (25-35%) in the reactions of [4] and amines under similar conditions. The advantages of [21] are also seen in the reaction with NH₃ which gives $\{Cp(C0)_2Fe[CH(NH_2)]\}CF_3S0_3,[29],$

Complex		IR^{a} (v(CO), cm ⁻¹)
$\{C_{P}(C_{0})_{2}F_{e}[CH(SM_{e})(C_{5}H_{5}N)]\}CF_{3}SO_{3}$	[21]	2022s 1974 s
{Cp(C0) ₂ Fe[CH(NMe ₂)]}PF ₆	[22]	2049 s 2005 s
$\{C_{P}(C0)_{2}Fe[CH(NEt_{2})]\}CF_{3}SO_{3}$	[23]	2048 s 2004 s
{Cp(C0) ₂ Fe[CH(NHMe)]}PF ₆	[24]	2055 s 2007 s
{Cp(C0) ₂ Fe[CH(NHCy)]}CF ₃ S0 ₃	[25]	2054 s 2004 s
{Cp(C0) ₂ Fe[CD(NHCy)]}CF ₃ S0 ₃	[26]	2053 s 2007 s
$\{C_P(CO)_2 Fe[CH(NHPr^i)]\}PF_6$	[27]	2053 s 2005 s
$\{C_{P}(C0)_{2}Fe[CH(NHBu^{t})]\}CF_{3}SO_{3}$	[28]	2055 s 2007 s
{Cp(C0) ₂ Fe[CH(NH ₂)]}CF ₃ S0 ₃	[29]	2056 s 2010 s
$\{C_{P}(CO)(MeCN)Fe[CH(NHCy)]\}CF_{3}SO_{3}$	[36]	1994

Table 9. Selected IR and ¹H NMR data for pyridine adduct and secondary amino carbene complexes

^aCH₂Cl₂ solution. ^bCDCl₃ solution. ^cCD₃CN solution. ^dCD₃COCD₃ solution. ^eCD₂Cl₂ solution. *Exchanges with D₂O.

Ср	CH	NH*	Other
5.10 ^b	6.42		9.31 (d, J _{HH} =5.49); 8.30 (t, J _{HH} =6.96); 7.92 (t, J _{HH} =6.60)[Pyr], 1.92 (SMe)
5.30 ^c	10.79		1.94 (d, J _{HH} =2.6); 1.89(d, J _{HH} =2.2)[NMe]
5.59 ^d	11.30		3.99 (q, $J_{HH} = 7.3$); 3.96 (q, $J_{HH} = 7.3$)[NCH ₂] 1.47 (t, $J_{HH} = 7.3$); 1.36 (t, $J_{HH} = 7.3$) [NCH ₂ Me]
5.29 ^c	10.69	10 .90	3.33 (d, J _{HH} =3.3, NMe)
5.25 ^e	10.76	10.55	3.52 (br); 1.56 (m)[Cy]
5.25 ^e		11.63 (br)	3.49 (br); 1.56 (m)[Cy]
5.28 ^b	10.85	10.64	3.89 (h, J _{HH} =6.6, NC <u>H</u> Me ₂), 1.38 (d, J _{HH} ≈ 6.6, NCH <u>M</u> e ₂)
5.27 ^b	10.83	10.63	1.42 (t-Bu)
5.33 ^c	11.30 (m)	11.51 (m)	
4.76 ^b	11.62	11.84	3.56 (m); 1.88-1.26 (m)[Cy], 2.35 (MeCN)

ł

Complex	Carbene	CO	Ср	Others
[21] ^a		213.6	87.2	19.8 (SMe), 143.0; 141.9; 128.2 [Pyr]
		213.2		64.5 (CH)
[22]	234.9	211.8	88.8	55.9; 47.7 [NMe]
[23]	232.4	211.7	88.9	58.8; 53.2 [N <u>C</u> H ₂] 14.4; 13.2 NCH ₂ Me
[24]	238.6	211.2	88.6	45.8 (NMe)
[25]	235.1	211.3	88.8	69.9; 32.5; 25.3; 25.1 [Cy]
[26]	234.5 (t, 23.44) ^b	211.3	88.8	69.8; 32.5; 25.3; 25.1 [Cy]
[27]	234.5	211.5	88.8	63.3 (N <u>CH</u> Me ₂), 21.8 (NCH <u>M</u> e ₂)
[28]	231.2	212.5	89.7	66.5 (N <u>C</u> Me ₃), 29.0 (NC <u>Me</u> 3)
[36] ^a	243.9	216.1	83.7	133.7 (CN), 69.1; 32.1; 24.8; 24.6 [Cy], 5.1 (Me)

Table 10. $\frac{1.3}{2}$ C NMR data for the pyridine adduct and secondary amino carbene complexes in CD₃CN

^acdc1₃. ^bj_{cd}.

i .

that is more readily purified than that obtained from [4]. Compound [29] has been synthesized from [4] and NH_3 , but only an oily product which could not be purified was obtained (Eqn. 55).

Although, extensive chemical reactivity studies on [21] have not been undertaken, the success in Equations 54-55 suggest that [21] may be a useful and stable equivalent of [4].

Aminolysis of [4]

Reactions of amine nucleophiles with thioalkoxyl carbenes are known $^{19,96-98}$ to lead to the replacement of the thioalkoxyl group by an amino group, as illustrated in Equation 56. This reaction is undoubtedly facilitated by the good leaving ability of the thioalkoxyl group. The amino thiocarbene products are stabilized by strong p-p π -bonding between the nitrogen lone pair electrons and the C_{carb} Pz.

Secondary amines

When approximately one eqv. of Me_2NH is bubbled into a CH_2Cl_2 solution containing [4], an immediate color change is apparent. Upon evaporation of the solvent, a benzene extract and a CH_2Cl_2 -soluble portion are obtained. The yellow air-sensitive benzene portion displays IR and ¹H spectra characteristic of [2]. The yield of [2] ranges from 20 to 35%, and is dependent upon the concentration of [4]. The formation of [2] is probably formed in a secondary reaction between [4] and MeS⁻ which is generated under the basic reaction conditions (Eqn. 57). An analogous reaction has been demonstrated⁷³ in a more sterically demanding and less electrophilic dithioalkoxyl carbene system, [1] (Eqn. 58).

(57)

$$\{Cp(CO)_2 Fe[C(SMe)_2]\} PF_6 + NaSMe \longrightarrow Cp(CO)_2 FeC(SMe)_3 + NaPF_6$$
(58)
$$[1]$$

The CH_2Cl_2 fraction is metathesized with $(NH_4)PF_6$ /acetone and readily recrystallized from CH_2Cl_2/Et_20 to furnish pale yellow, air-stable crystals of $\{Cp(C0)_2Fe[CH(NMe_2)]\}PF_6$, [22], (30%). The yield of [22] is diminished sharply when more than one eqv. of Me_2NH is used. The predominate organometallic product when a 5:1 amine/carbene ratio is utilized is $[Cp(C0)_2Fe]_2$, [3]; the organic product in this case was found by its $IR(v(CN) = 1700 \text{ cm}^{-1})$ and NMR spectra⁹⁹ to be $[Me_2NCHNMe_2]CF_3S0_3$. Complex [3] is seemingly produced from the further reaction of [22] with excess amine; mechanistic aspects of this secondary reaction will be discussed in detail later.

Analogously, $\{Cp(CO)_2Fe[CH(NEt_2)]\}CF_3SO_3, [23]$, may also be prepared, and the yields of [23] and [2] are comparable to those in the Me₂NH reaction (Eqn. 57). An excess of Et₂NH also decreases the yield of the desired complex, [23].

<u>Spectral properties of [22] and [23]</u> As mentioned previously, a lone-pair-bearing heteroatom (N, O, or S) is capable of p-p π -bonding to the empty P_z orbital of C_{carb}, resulting in a multiple-bond between the C_{carb} and the heteroatom. This results in restricted rotation around the C_{carb}-N bond in amino carbene complexes. This restricted rotation has been noted in the ¹H spectrum of Cl₃(PEt₃)₂Rh[CH(NMe₂)]¹², in which, two separate methyl signals were observed. These signals do not coalesce even at a temperature of 150°C.

In the ¹H NMR spectrum of [22] (Table 9), the methyl region shows two doublets. The doublets are assigned to two chemically and magnetically non-equivalent methyls (designated cis and trans in Figure 6) which are coupled differently to the carbene hydrogen.

Figure 6. An illustration of [22]

Their non-equivalence is further supported by the 13 C spectrum (Table 10), in which, two distinct methyl carbon signals are observed. Collectively, these observations can be explained by assuming there is restricted rotation around the C_{carb}-N bond (Figure 6).

In the same way, 1 H and 13 C spectra of [23] exhibit two distinct ethyl groups; its 1 H spectrum is illustrated in Figure 7.

Primary amines

As shown in Equation 59, nucleophilic displacement of a thiomethoxyl group by a primary amine is a method for preparing $[C1(PPh_3)_2(C0)_2Os(CH(NHMe))]^+$ from its thiomethoxyl carbene precursor ¹⁹. Methylmercaptan was the other product.

Cp / / CH3

152

trans {CI(PPh₃)₂(CO)₂Os[CH(SMe)]}SO₃F

$$\int_{V} H_2NMe$$
MeSH + trans {C1(PPh₃)₂(CO)₂Os[CH(NHMe)]}SO₃F

(59)

In the same way, we find that [4] reacts with a variety of amines, MeNH₂, CyNH₂, i-PrNH₂ and t-BuNH₂ giving the corresponding amino carbene complexes by displacing the thiomethoxide (Eqn. 60). Spectroscopic data for the amino carbene complexes are summarized in Tables 9 and 10.

Although the reactions are virtually complete upon addition of one eqv. of the amine to [4], the yields of the amino carbenes are low (28-38%), and the yields of the side product, [2], are comparable (30-35%). Ironically, in an effort to improve the yields of the carbene complexes in Equation 60 by using a 2-5 fold excess of the amine to compete for

38

[28]

t-Bu

the available [4] with MeS⁻, lower or no yields of the desired amino carbene were obtained. In these cases, [2] and [3] are the other identified organometallic products (Eqn. 61).

<u>Spectral properties</u> Infrared v(CO) bands of these primary amino carbenes resemble those of [22] and [23] occurring as two strong absorptions in the regions of 2053-5 and 2004-7 cm⁻¹; they are an average of 20 cm⁻¹ lower than those in [4] (Table 2). The carbene hydrogen is found in the general range 11.5-10 δ which is significantly more shielded, at least 3.5 PPM, than the thiomethoxyl analog, [4] (Table 2).

Although, ¹³C data for [4] are not available for comparison, the C_{carb} resonance of a more stable and relatively electron-richer analog, $\{Cp(C0)(P(0Ph)_3)Fe[CH(SMe)]\}CF_3S0_3, [44]$, is found at least 90 PPM downfield from the C_{carb} resonance in these amino carbene complexes. In summary, the decreases in carbonyl stretching frequencies together with increases in shielding of the α -hydrogen of the carbene ligand are probably caused by greater p-p π -backbonding from X to the C_{carb} Pz orbital when X is N as compared to the situation when X = S.

<u>Stereochemistry of primary amino secondary carbene complexes</u> The amino carbene complexes prepared from primary amines may exist in

either of two isomeric forms, that with the alkyl group syn to the $Cp(CO)_2Fe$ moiety and that with it anti (Figure 8). Restricted rotation around the C_{carb} -N bond would suggest that the isomers should interconvert sufficiently slow that both isomers could be observed in NMR spectra of the compounds. Both isomers were observed for the trans $[C1(PEt_3)_2Pt(CH(NHR))]^+$ (R = p-tolyl)¹¹ carbene compound.

SYN

ANTI

Figure 8. Syn and anti isomers of Cp(CO)₂Fe[CH(NHR)]⁺

In contrast, ¹H and ¹³C NMR spectra of [24]-[28] show the presence of only one isomer. Even with the sterically undemanding alkyl, [24], (R = Me), only one isomer is observed; a single doublet caused by coupling to the amino hydrogen is found. This doublet collapses to a singlet when D₂O is added to the solution.

Syn-anti structural assignments based on ${}^{3}J_{\rm NHCH}$ coupling constants have been made in other primary amino carbene complexes 11 . Since the NH and CH resonances of these carbene complexes of iron are rather broad and unresolved, the ${}^{3}J_{\rm NHCH}$ coupling constants are not computed. Based on steric arguments, the anti isomer is likely to be the more stable; indeed, the anti isomer is often the predominant species in other amino hydrido carbene complexes 11,19 . Thus, we believe that the anti isomer is probably the isomer which is observed in the NMR spectra of solutions of complexes [24]-[28].

One might speculate on mechanisms which would lead to that isomer only. By analogy with reactions of [4] with nucleophiles such as pyridine and phosphines, the primary amine probably first attacks the C_{carb} of [4] to give the adduct. Two of the possible rotomers of the adduct are shown as structures A and B in Scheme 3. In the presence of amine, one of the amino protons of A and B may be removed by a second mole of amine. Such a mechanism has been proposed¹⁰⁰ for a key step in the related reaction shown in Equation 62. This proton removal assists the elimination of MeS⁻ thus affording the amino carbene. This form of elimination is called an ElcB¹⁰¹ mechanism.

$$(CO)_{5}W[C(SMe)_{2}] + H_{2}NR \longrightarrow (CO)_{5}WCNR + 2HSMe$$
 (62)

By and large, ElcB reactions proceed in an anti-periplanar fashion where the leaving group and the nucleophile achieve a dihedral angle of 180°. In that geometry, electron-electron repulsion between the incoming and leaving groups is minimized in the transition state. Removal of Ha by amine in A is preferred over Hb, owing to the fact that the former proton is more accessible to base. Thus, the neutral complex C is the predominate species. The lone pair of electrons on the nitrogen of C is now aligned anti-periplanar to the leaving group, MeS⁻, which would facilitate MeS⁻ dissociation. This would lead to the anti complex. Similarly, if Hb in B were removed with base, the resulting D would

156

Fe=Cp(CO)₂Fe

ultimately yield the syn isomer. On steric grounds, structure B is likely to be present in lower concentration than A due to severe repulsion between the $Cp(CO)_2$ Fe and R moieties in rotomer B. Thus, structure A is favored, and the anti isomer would be predicted to be the major product in reaction 60, as observed.

The mechanistic arguments suggest that the anti isomer could be the sole kinetic product. However, it is also possible that an iminoyl formyl, $Cp(CO)_2Fe[CH=NR]$, is formed which isomerizes to the more thermo-dynamically stable anti product. In fact, studies of the alkylation of $Cp(CO)_2Fe[CH=NR]$ suggest that syn-anti interconversion in the iminoyl formyl complexes does occur. Thus, it is not possible to say whether stereospecific formation of the anti isomer of the amino carbene complex occurs for kinetic or thermodynamic reasons.

Reaction of {Cp(CO)₂Fe[CH(NHR)]}X with Base

The amino proton of primary amino secondary carbene complexes has previously been found to undergo rapid exchange with $D_2 0^{11,19}$. At high temperature, {(C1)(PEt₃)₂Pt[CH(NHR)]}X¹¹ was postulated to be in equilibrium with its iminoyl formyl (Eqn. 63).

$$C1 - Pt - C \stackrel{H+}{=} C1 - Pt - C + H^{+}$$

$$C1 - Pt - H$$

Although the Pk_a of this equilibrium has not yet been determined, this equilibrium together with the D_2^0 exchange results clearly indicates the lability of the amino carbene proton. Indeed, amines^{11,19} and sodium hydroxide¹⁹ have been shown to be effective for the deprotonation reaction in Equation 64^{19} .

$$\{0s(C1)[CH(NHMe)](C0)_{2}(PPh_{3})_{2}\}C10_{4}$$

$$(64)$$

$$H_{2}NMe$$

$$-(H_{3}NMe)C10_{4} > 0s(C1)(CHNMe)(C0)_{2}(PPh_{3})_{2} + NaC10_{4}$$

When [25] is allowed to react with a saturated NaOH-EtOH solution in CH_2Cl_2 , the deprotonation reaction occurs immediately upon addition of the base to produce $Cp(CO)_2Fe(CHNCy)$,[30], in 78% yield. Likewise, [27] and [28] could also be deprotonated with the base, giving $Cp(CO)_2Fe(CHNPr^i)$ ([31], 68%) and $Cp(CO)_2Fe(CHNBu^t)$ ([32], 76%), respectively. These complexes [30]-[32], are vulnerable to air oxidization either in solution or solid; and revert to the trans isomer of the carbene complexes in the presence of 5 eqv. of CF_3SO_3H in Et_2O . When they are kept in an inert atmosphere at room temperature for a few hours, a small amount of decomposition is apparent; the products of this decomposition are [3], characterized by its IR spectrum, and the corresponding isocyanide (RNC), identified by its distinctive odor. Whether the isocyanide is derived from a retro-metal-hydride-insertion reaction of $Cp(CO)_2$ FeH,[35], remains to be explored (Eqn. 65), though, the reverse reaction has been known for sometime 16,18 (Eqn. 66) 102 .

$$Cp(CO)_{2}Fe(CHNR) \xrightarrow{?} Cp(CO)_{2}FeH + RNC$$

$$\downarrow [35] \qquad (65)$$

$$R = Cy, i-Pr, t-Bu \qquad [Cp(CO)_{2}Fe]_{2}$$

$$[3]$$

$$(C_5^{Me_5})_2^{ZrH_2} + MeNC \xrightarrow{-65^{\circ}C} (C_5^{Me_5})_2^{Zr(H)}(CHNMe)$$
 (66)

Spectral properties of [30]-[32]

The infrared spectrum of [32] in hexane exhibits two v(CO) absorptions (2019, 1972 cm⁻¹), and its ¹H spectrum in CDC1₃ shows the CH resonance at a position upfield relative to [28], as expected for the removal of H⁺ from the ligand (Tables 11, 12). More importantly, the ¹H NMR spectrum shows the presence of only one isomer. However, the IR spectra of [30] and [31] display six and five carbonyl stretching bands, respectively. The Cp resonance of [30] appears as a doublet while the CH occurs as a doublet and singlet in its ¹H NMR spectrum in CDC1₃. The ¹H spectrum of [31] exhibits the Cp and i-Pr groups as doublets, and the CH appears as a singlet and doublet (Figure 9a). The CH doublet in [31] is observed to collapse to a singlet when the methine resonance region of the i-Pr group is simultaneously irradiated in a homonuclear gated decoupled experiment (Figure 9b). Since two sets of CH and Cp

Complex		v(CO) cm ⁻¹
Cp(CO) ₂ Fe(CHNCy) ^a	[30]	2030 s, 2021 s, 2013 s, 1982 sh, 1971 vs, 1963 s
Cp(CO) ₂ Fe(CHNPr ⁱ) ^a	[31]	2028 sh, 2014 s, 1980 sh, 1971 s, 1963 s
Cp(CO) ₂ Fe(CHNBu ^t) ^a	[32]	2019 s, 1972 vs
{Cp(CO) ₂ Fe[CH(NMeCy)]}SO ₃ F ^b	[33]	2049 s, 2003 s, 1998 sh
{Cp(CO) ₂ Fe[CH(NMePr ⁱ)]}SO ₃ F ^b	[34]	2044 s, 2000 s

Table 11. Selected IR data for iminoyl formyl complexes and their carbone derivatives

^aHexane. ^bCH₂C1₂.

Complex		СН
[30] ^a	Syn	10.15
	Anti	10.18 (d, ⁴ J _{HH} = 1.79)
[31] ^a	Syn	10.21
	Anti	10.16 (d, ${}^{4}J_{HH} = 2.20$)
[32] ^a	Anti	10.22
[33] ^b	Z .	10.84
· .	E	11.03
[34] ^b	Z	10.83
	E	11.04

.

Table 12. ¹H NMR data for iminov1 formy1 and carbone complexes (δ)

^acdc1₃. ^bcd₃cn.

ъ

Ср	Other
4.85	2.91 (m, Cy), 1.58 (m, Cy)
4.90	2.91 (m, Cy), 1.58 (m, Cy)
4.94	3.20 (m, <u>CH</u> Me ₂), 1.17 (d, J _{HH} = 6.23, Me)
4.91	3.20 (m, <u>CH</u> Me ₂), 1.22 (d, J _{HH} = 6.23. Me)
4.84	1.10 (Me)
5.33	3.44 (d, $J_{HH} = 1.10$, NMe), 3.8 (m);
	1.0 (0)[Cy]
5.32,	3.48 (d, J _{HH} = 0.74, NMe)
5.31	3.8 (m); 1.6 (m)[Cy]
5.30	3.90 (h, $J_{HH} = 6.60$, N <u>CHM</u> e ₂),
	3.42 (d, $J_{HH} = 0.74$, NMe),
	1.36 (d, $J_{HH} = 0.60$, NCHMe ₂)
5.32	4.20 (h, $J_{HH} = 6.60$, NCHMe ₂),
	3.45 (d, J_{HH}^{-} = 0.73 NMe),
· •	1.32 (d, $J_{HH} = 6.60$, $NCHMe_2$)

resonances are evident, at least two isomers are present in solutions of [30] and [31]. However, it is not obvious why v(CO) absorptions are so abundant relative to the ¹H signals, perhaps, two or more isomers are rapidly interconverting such that only their weighted-average spectrum is observed in the NMR, but their individual IR spectra are observed because of the shorter time scale for IR measurements.

SYN

ANTI

Figure 10. R = i-Pr, t-Bu; CO groups are omitted for clarity

As mentioned in the General Introduction section, on the basis of MO calculations on carbene complexes 103-105, the most favorable orientation of the carbene plane is perpendicular to the Cp plane (see Figure 3-A in General Introduction). In principle, there are four possible isomers for these iminoyl formyl complexes (Figure 10). We postulate that rotation around the Fe-C bond in the iminoyl formyl complexes is faster than the ¹H NMR time scale. Consequently, signals in the ¹H spectra of [30] and [31]could be the average of the syn (Figure 10-A, B) and anti (Figure 10-C, D) pairs.

Although a few other complexes have been reported to be mixtures of syn-anti isomers¹⁸, structural assignments have proven to be difficult and ambiguous. Despite numerous studies of the structures of organic iminoyl formyls, reports of ¹H NMR studies, especially long-range coupling across the C=N double bond, ⁴J_{CHNCH2R}, for the syn and anti isomers, are few in number. This is because most of the iminoyl formyls exist predominantly in the anti configuration ¹⁰⁶. It has been semi-empirically suggested that in allyl systems, H₂C=C(CH₃)X, ⁴J_{CH2}=CCH₃ coupling of a cisoid is stronger than the transoid. ¹⁰⁷ However, the ¹H NMR spectrum of N-methylmethylene imine, H₂C=NCH₃¹⁰⁸, was observed to exhibit an ABX₃ pattern with ⁴J_{cis} identical to ⁴J_{trans}. Based on the allyic system, the iminoyl formyl₁hydrogen of [30] in the anti conformation must have a larger ⁴J_{HH} than the syn counterpart; thus, the doublet is assigned to the isomer where the Cy is trans to the Cp(CO)₂Fe moiety whereas the singlet is the syn isomer. Therefore, the anti:syn

166

6

ratio is 52:48. Analogously, the anti:syn ratio for [31] is 58:42. It is interesting to note that the anti isomer, which is thermodynamically favored based on steric arguments, is the predominate conformer in both cases, [30] and [31]. Thus, it is conceivable that [32] may adopt only the anticonformation, due to the bulkiness of the t-Bu group. The trend in the anti to syn ratio for [30]-[32] is consistent with steric hindrance arguments which indicate the bulkiness of the R group decreases in the order: t-Bu>i-Pr>Cy. For [30], the anti:syn ratio is the approaching the statistical distribution (50:50); hence, the Cy group appears to exert little or no steric effect on the anti/syn ratio.

Interestingly, both isomers of [30] and [31] are obtained by deprotonation of their trans carbene precursors; thus, syn-anti isomerization must be occurring after removal of the amino proton of the carbene. That is, the iminoyl formyl complex can rapidly isomerize. This phenomenon was observed in $Cl(PEt_3)_2Pt(CHNR)$ using variable-temperature ¹H NMR techniques; however, the barrier of this interconversion for the syn-anti isomers was not determined¹⁸. An attempt was made to verify rapid isomerization in [31] by variable temperature ¹H NMR studies; it was found that within experimental error, the anti/syn isomeric ratio remains constant from ambient temperature to 50°C.

Evidence for syn-anti interconversion comes, however, from alkylation studies. When an Et_2^0 solution of [31] is quenched with a 6-fold excess of Me0S0₂F at room temperature, two isomers, E and Z, of {Cp(C0)₂Fe[CH(NMePrⁱ)]}S0₃F,[34], are apparent in the ¹H spectrum of the

167

solution. When only three eqv. of MeOSO₂F is added under the same conditions, the E form increases to 95%. These experiments imply that one iminoyl formyl isomer of [31] (anti) is more susceptible to methylation; the less reactive isomer apparently converts to the more reactive form during the reaction. These alkylation reactions will be discussed in detail shortly.

<u>Mechanistic discussion of the syn-anti interconversion in the</u> <u>iminoyl formyl complexes</u> Theoretical calculations on mechanisms of the interconversion of isomers of imines have been performed. Two primary mechanisms, C-N bond rotation and planar inversion of nitrogen (lateral shift mechanism) have been proposed¹⁰⁹. The rotational pathway requires bond breaking and charge separation in proceeding to the transition state (TS). Inversion involves a linear intermediate which loses its stereochemical integrity (Figure 11).

ROTATION TS

INVERSION TS

Figure 11. Interconversion transition states

SCF-LCAO-MO calculations for the simple methyleneimine ($H_2^{C=NH}$) showed that the barrier for inversion (27.9 kcal/mol) is lower than that for rotation by a factor of 2 (57.5 kcal/mol). Therefore, the inversion pathway appears to be more favorable for the syn-anti topomerization for simple imines. When applied to the iminoyl formyl complexes, the lateral shift mechanism is as shown in Scheme 4.

 $Fe = Cp(CO)_2 Fe$

Scheme 4

This mechanism offers an explanation for the ready isomerization of iminoyl formyl complexes, [30] and [31], and the very slow isomerization of their carbene analogs. If a rotation mechanism were involved in the isomerization, one would expect the carbene complexes to isomerize more rapidly than the iminoyl formyls since the C-N bond of a carbene $(1)_2(CNtolyl)(PPh_3)(CO)Ru[CH(NMe(tolyl))]^{15}$ is known to be longer than its iminoyl formyl analog²¹. In the inversion mechanism, the C-N bond is not broken in the transition state; thus, the increase in the C-N bond strength in the iminoyl formyl complex is probably not an important
factor in influencing the overall activation energy. It has also been demonstrated that Lewis acids and protic solvents are capable of retarding the syn-anti topomerization of organic imines¹⁰⁹. This retardation was rationalized by noting that the lone pair electrons which are needed for the inversion process are bonded by the acid or proton. Thus, a protonated or alkylated iminoyl formyl complex, is unable to undergo the lateral shifting motion. The C-N bond rotation is the other viable alternative pathway for the syn-anti conversion, but as mentioned pre-viously it has a higher energy barrier. Thus, one would expect, and it is observed, that the iminoyl formyl complexes, [30] and [31], are more fluxional than their carbene precursors, [25] and [27].

Methylation of the Iminoyl

Formyl Complexes

The methylation of the nitrogen in iminoyl formyl complexes with MeI or (Me)X is facile, giving the corresponding dialkylamino carbene compounds ^{15,16}. The previously reported methylation of a platinum compound is illustrated in Equation 67.

$$C1 - Pt - C + Me_2SO_4 \rightarrow C1 - Pt - C \qquad (67)$$

$$L = PEt_2, R = p-tolyl$$

When an ether solution of [30] reacts with $Me0S0_2F$, a yellow precipitate is formed and the reaction is complete within 5 min; methyl iodide fails to produce a precipitate under similar conditions. IR and ¹H spectra (Tables 11, 12) of the methylated product show the isolated solid to be a mixture of isomeric carbene compounds, {Cp(C0)_2Fe[CH(NMe(Cy))]}S0_3F,[33], and the product ratio is dependent on the concentration of the methylating agent (Eqn. 68).

$$Cp(CO)_{2}Fe(CHNR) + MeOSO_{2}F \longrightarrow \{Cp(CO)_{2}Fe[CH(NMe(R))]\}SO_{3}F$$

 E/Z (68)
 $R = Cy [33]$
 $= i-Pr [34]$

With a $[30]:MeOSO_2F$ ratio of 1:10, two carbene hydrogen (11.03, 10.84 δ) and three Cp ring proton (5.328, 5.316, 5.295 δ) resonances are observed. Integration of the three Cp absorptions shows the presence of three isomers in the ratio 74:10:16, respectively (Figure 12-A). When the iminoyl formyl:MeOSO_2F ratio is reduced to 1:6, the Cp ring ratio changes to 17:34:39 (Figure 12-B). Finally, with a ratio of 1:3, the result is 10:71:19 (Figure 12-C) (Table 13).

In these experiments, the carbene hydrogen ratio varies from 26:74, 83.17 to 90:10, respectively (Figure 12). In principle, four products are possible in this reaction (Figure 13). However, it is clear that only three are obtained, and the CH(11.03 δ) and Cp(5.316, 5.295 δ) resonances belong to a pair of isomers whereas CH(10.84 δ) and

Figure 12. ¹H spectra of $\{Cp(C0)_{2}Fe[CH(NMeCy)]\}S0_{3}F,[33]$; Cy is omitted. [30]/MeOSO₂F ratio: a (1:10), b (1:6), c (1:3)

 $Cp(5.328 \delta)$ belong to one isomer of the other possible isomeric pair.

С

А

Figure 13. CO groups are omitted for clarity

As mentioned previously, ${}^{4}J_{cis}$ hydrogen coupling constants in the allyic system are larger than ${}^{4}J_{trans}$. Thus, the lone isomer is assigned structure B in Figure 13 with ${}^{4}J_{CHNMe}$ 1.10 Hz. This assignment is preferred over structure A for steric reasons; since A is too sterically strained and should be the least favored isomer. Thus, when a solution of [30] is quenched with a large excess of $Me0S0_{2}F$, the product distribution presumably gives a better indication of the thermodynamic distribution of isomers of [30] than when a smaller amount of $MeOSO_{2}F$ is used. Little or no compound A is observed, as expected. For the remaining isomeric pair, Figure 13-C, D, the ${}^{4}J_{CHNMe}$ coupling constant is smaller (0.74 Hz) which is consistent with an E configuration. As the MeOSO,F concentration decreases, the ratio of the Cp ring areas of this pair (5.316, 5.295 δ) increases. This clearly suggests one of the anti isomers of [30] is more reactive toward the incoming methyl cation. Models also show that the nitrogen lone pair in structure D of Figure 10 is more accessible to Me⁺ than it is in C; hence, structure D (5.316 δ) in Figure 13 is probably the predominant product at low MeOSO₂F conditions. It is worth mentioning that structures C and D in Figure 10 are related by a Fe-C bond rotation and are produced in approximately equal amounts using the high MeOSO,F concentration as shown by the product distribution in Figure 12-A, B. The lowest Me⁺ concentration (3-fold excess) gives structure D in Figure 13 almost stereospecifically (Figure 12-C). Therefore, Fe-C bond rotation interconverting structures 10-C and D must be occurring during the alkylation, and the rate must be

faster than that of the alkylation of structure 10-D and faster still than the alkylation of structure 10-C at the lowest MeOSO₂F concentration. These relative rates would give predominantly structure 13-D at low MeOSO₂F concentrations. These results lend credence to our earlier assumption of relatively rapid Fe-C bond rotation in [30] which allows the interconversions of the two observed syn and anti isomers.

The E:Z product ratio of the carbene complex [33] also varies with the MeOSO₂F concentration. Structures 10-C and D which give rise to the E isomers are evidently more reactive toward the alkylating agent than structure 10-B, although there is no obvious reason for these differences in rates. The changes in the E:Z product distribution undoubtedly reflect the ongoing isomerization between the syn and anti isomers of [30].

It is worth noting that although the anti:syn ratio of [30] is 52:48, it gives [33] with an E:Z ratio of 26:74 upon methylation with 10 eqv. of MeOSO₂F. Since the alkylation reaction was carried out in diethylether while the anti:syn ratio of [30] was determined in CDCl₃, the change in isomeric distribution may result from a different distribution of [30] in the different solvents. Such a change in isomeric distribution has been noted in the Cl(PEt₃)₃Pt(CHNR) system¹¹. Indeed, when the alkylation is carried out in CHCl₃ with a 10-fold excess of MeOSO₂F, the E:Z ratio becomes 68:32 (as compared with 26:74 in Et₂0). Interestingly, the major E isomeric product in the above reaction in CHCl₃ is structure 13-C (64%) which was found to be formed in only a slightly greater amount than 13-D when the alkylation was carried out

with a 10-fold excess of MeOSO₂F in ether solvent (Table 13). These results suggest that structure 10-C is sterically more favorable than D since the nitrogen lone electron pair is directed away from the electron rich CO groups.

R	Complex/Me0S0 ₂ F	Complex/Me0SO ₂ F Solvent E/Z	E/Z	lsomeric carbene products (%) ^a			
				A	В	С	D
Cy	1:10	Et ₂ 0	26:74	0	74	16	10
Cy	1:10	CHCI3	68:32	0	32	64	4
Cy	1:6	Et ₂ 0	83:17	0	17	39	34
Cy	1:3	Et ₂ 0	90:10	0	10	19	71
i-Pr	1:6	Et ₂ 0	62:38	-	-	-	-
i-Pr	1:3	Et ₂ 0	95:5	-	-	-	-

Table 13. Methylation results for Cp(CO)₂Fe[CH=NR]

^aThese isomers are depicted in Figure 13.

When 6 eqv. of MeOSO₂F react with [31] in Et_2 0, a mixture of E and Z isomers of [34] (Eqn. 68) is obtained. However, only two isomeric carbene complexes are observed in the ¹H NMR spectrum of the product (Figure 14). Presumably, only one of each of the isomeric pairs exists in solution due to steric crowding. Since the ⁴J_{CHNMe} of both isomers only differ by 0.01 Hz, which is within the resolution limits of the instrument, structural assignments based on these values are inappropriate. Following the assignments made for the isomers of [33], the

Figure 14. ¹H spectrum of $\{Cp(CO)_2Fe[CH(NMePr^i)]\}SO_3F,[34],$ in CD₃CN with [31]/MeOSO₂F ratio 1:6

carbene hydrogen of the E isomer of [34] appears at lower field than that in the Z isomer; thus, the E:Z ratio for [34] would be 62:38. The assignment is believed to be reliable since it is consistent with the trend observed in [33]; namely, the E isomer of [34] is the predominant product (95%) when 3 eqv. of MeOSO₂F is used (Table 13).

In summary, [30] and [31] are believed to undergo syn-anti interconversion as well as Fe-C rotation at ambient temperature. Methylation of [30] and [31] gives up to three isomers of [33] and [34] depending upon the concentration of $MeOSO_2F$ and the relative rates of syn-anti interconversion and Fe-C bond rotation.

Hydrolysis of Cp(CO)₂Fe[CH=NPr¹]

Organic aldimines are known to hydrolyze to aldehydes and amines $(Eqn. 69)^{110}$. An attempt to react [31] with water in CH_2Cl_2 at room temperature, in the hope of obtaining the metal formyl compound, resulted in isolation of the starting material (Eqn. 70). This clearly demonstrates the stability of [31]; more vigorous conditions for this reaction have not been explored.

$$C = NR' + H_2 0 \implies RCH0 + R'NH_2$$
(69)

$$C_{p}(CO)_{2}Fe[CH=NPr^{i}] + H_{2}O - C_{p}(CO)_{2}FeCHO + H_{2}NPr^{i}$$
 (70)
[31]

Decarbonylation of [25]

Trimethylamineoxide has been used for the decarbonylation of metal carbonyl complexes 111-113. The reaction is often rapid, and the conditions are milder than photolytic or thermolytic methods of removing CO (Eqn. 71) 113.

$$LMO(CO)_{5} + L + Me_{3}NO - --> cis - L_{2}MO(CO)_{4} + CO_{2} + NMe_{3}$$
 (71)

A dichloromethane solution of [25] is titrated with $Me_3NO/MeCN$. The decarbonylation reaction is complete as soon as 1.2 eqv. of the amine oxide is introduced; $\{Cp(CO)(MeCN)Fe[CH(NHCy)]\}CF_3SO_3,[36]$, is obtained (93%). The identical product,[36], is isolated (85%) from an acetonitrile solution of [25] after it is irradiated with 254 nm light for 2 hours (Eqn. 72).

Compound [36] is an air-stable yellow crystalline material which has its v(CO) band at 1994 cm⁻¹; the NH proton is much less labile than that in the parent compound, [25], and exchanges with D_2O in one hour (Tables 9, 10) in CDCl₃.

Reactions of {Cp(CO)₂Fe[CH(NHR)]}CF₃SO₃ with NH_2R'

As outlined earlier, the reaction of [4] with excess cyclohexylamine gives $[Cp(C0)_2Fe]_2$,[3], and $(CyNHCHNHCy)CF_3S0_3$. These products undoubtedly result from the reaction of the amine and [25] which is generated under the reaction conditions. This reaction was studied in greater detail (Eqn. 73).

$$\{ Cp(C0)_{2} Fe[CH(NHCy)] \} CF_{3}SO_{3} + NH_{2}Cy \longrightarrow Cp(C0)_{2}FeH$$

$$[25] [35]_{+} (73)$$

(CyNHCHNHCy)CF3S03

The reaction of 5 eqv. of $CyNH_2$ with 1 eqv. of [25] in CH_2CI_2 solvent at room temperature was monitored by scanning the 2100-1600 cm⁻¹ region at various time intervals. After 30 min of mixing, 75% of [25] was consumed. The presence of NNLdicyclohexyl foramidinium (v(CN) = 1712 cm^{-1}) and new v(CO) absorptions (2011 s, 1952 vs) are evident; however, $[Cp(CO)_2Fe]_2$ is absent at this stage. The organometallic product is very volatile and is isolated along with the reaction solvent by vacuum distillation. This pale red, air-sensitive solution exhibits IR bands identical to those noted above; in hexane, these v(CO) absorptions occur at 2020, 1965. This spectrum is identical to that of an authentic sample of $Cp(CO)_2FeH$ synthesized from $Cp(CO)_2FeCI$ and $Na(BH_4)^{114}$. It is known that $Cp(CO)_2FeH$ decomposes to $[Cp(CO)_2Fe]_2^{114}$, which explains the origin of the dimer in reaction 61. The $(CyNHCHNHCy)CF_3SO_3$ product is isolated as a white solid whose proton NMR and IR spectra are in accord with an authentic sample prepared from the reaction of cyclohexylamine and cyclohexylisocyanide (Eqn. 74)¹¹⁵. Interestingly, the foramidinium compound decomposes to its foramidine

$$CyNC + excess CyNH_{2} \xrightarrow{Cul} CyN=CHNHCy$$

$$\int CF_{3}CO_{3}H$$

$$(CYNHCHNHCy)CF_{3}SO_{3}$$

$$(74)$$

which is reprotonated under the mass spectrometry conditions to give $(CyNHCHNHCy)^+$ with a parent peak at m/e 209¹¹⁶⁻¹¹⁷.

The hydride complex $Cp(CO)_2$ FeH is the sole organometallic product in reaction 73. Since the hydrogen in this complex could originate from the carbene hydrogen or the amine hydrogens, the carbene hydroggen was labeled with deuterium, [26], and this compound was allowed to react with 5 eqv. of NH₂Cy in CH₂Cl₂. The crude organic product was analyzed by mass spec. and found to have a parent peak at m/e 210. This product also reacts with n-BuLi to give NN1-dicyclohexylforamidine, whose ¹H NMR spectrum shows no methine proton resonance. These results indicate that the carbene hydrogen is not transferred to the iron, thus, the hydrogen in Cp(CO)₂FeH is acquired from the amine.

Reaction 73 may occur by several possible mechanisms. One involves initial removal of the NH proton from Cp(CO)₂Fe[CH(NHR)]⁺; the resulting

 $Cp(CO)_2Fe(CHNR)$ could then react with additional amine to form the products. Thus, the reaction of $Cp(CO)_2Fe(CHNR)$ with excess of RNH₂ was carried out. The proton was removed from [25] by treating it with a saturated NaOH/EtOH solution. The solvent was evaporated and the resulting iminoyl formyl complex, [30], was then allowed to react with 5 eqv. of CyNH₂ in CH₂Cl₂ at room temperature. IR spectra of the solution showed that no reaction had taken place after a period of a half hour. However, when 5 eqv. of CF₃SO₃H were introduced into the mixture, progressive growth of IR bands for Cp(CO)₂FeH and the foramidinium ion occurred. Thus, removal of the NH proton inhibits the reaction, and the iminoyl formyl complex is an unlikely reaction intermediate leading to the products in Equation 73.

To summarize these and other pertinent results, we have proposed two pathways that may be involved in reaction 73. Initially, an amine attack upon the C_{carb} yields A in Scheme 5. Under excess amine reaction conditions, A is deprotonated to give B as illustrated by path a. Subsequent β -hydrogen elimination affords $Cp(CO)_2$ FeH and the foramidine, which is then reprotonated to give the observed cationic product. Alternatively, A may undergo a direct β -hydrogen elimination as depicted in path b, to furnish the observed products. Both paths a and b are indistinguishable based on our earlier experiments. However, in the reaction of [22] and Me₂NH, though much slower than reaction 73 under the same conditions, [3], [35] and $(Me_2NCHNMe_2)CF_3SO_3$ are produced after one hour of reaction. The organic product is identified by its IR(ν (CN) 1700 cm⁻¹), and its ¹H NMR spectrum is the same as that reported for NN'-tetramethylforamidinium⁹⁹. The fact that this reaction occurs suggests that path a is not the mechanism for reaction 73 since [22] lacks an NH proton for the necessary deprotonation step. In summary, path b in Scheme 5 is the more probable mechanism for reaction 73.

Other primary amines also react with [25] to give [35] and a mixture of foramidinium compounds. For instance, the reaction of NH₂Me with [25] produces NN methylcyclohexyl foramidinium, NN dimethyl foramidinium and a small amount of NN dicyclohexyl foramidinium ions. The relative yields and identifications were established by their mass spectra (Eqn. 75).

The NN'-dimethyl and NN'-dicyclohexyl foramidinium compounds are probably the product of alkyl exchange reactions of the NN'-methylcyclohexyl foramidinium and free amines. Indeed, NN'-dicyclohexyl foramidinium readily reacts with MeHN₂ in CH_2Cl_2 for $\frac{1}{2}$ hour at room temperature to give all of the three products (Eqn. 75). The reactivity trend for the reaction of [25] and primary amines is inversely proportional to the steric hindrance of the amine. That is, methylamine reacts faster than cyclohexylamine which is still faster than t-butylamine. The importance of the size of the amine hints that some sort of nucleophilic attack mechanism is operating. These results certainly lend credence to our earlier assumption that amine attack on the C_{carb} of the amino carbene complexes is the initial, and perhaps rate-determining, step in these reactions (Scheme 5).

Synthesis of {Cp(CO)₂Fe[CH(NH₂)]}CF₃SO₃

Despite the large number of examples of nucleophilic substitution reactions in metal carbene ligands with alkylamines, the corresponding reaction with ammonia is rare¹¹⁸⁻¹²⁰. Fischer et al. found that an acetonitrile solution saturated with NH₃ reacted with $Cr(CO)_5[C(OMe)Ph]^{118}$ to yield $Cr(CO)_5[C(Ph)NH_2]$. When MeCN-NH₃ is added dropwise to a CH_2Cl_2 solution of [4], an intractable oil showing v(CO) absorptions at 2056 and 2010 cm⁻¹ is obtained (Eqn. 76). The oil is presumed to be { $Cp(CO)_2Fe[CH(NH_2)]$ }CF₃SO₃,[29]. By bubbling NH₃ gas directly into a CH_2Cl_2 solution of [4], a similar oily product is obtained. However, { $Cp(CO)_2Fe[CH(SMe)pyr]$ }CF₃SO₃,[21], readily reacts with gaseous NH₃ to give [29]. Moreover, the product from this reaction can be recrystallized from CH_2Cl_2 -Et₂O to yield pale yellow, air-stable [29] in 20% yield (Eqn. 55). Its IR spectrum is identical to that obtained in the reaction of [4] with NH₃ noted above.

 $(CO)_5 Cr[C(Me)NH_2]$ has been shown by an ¹H variable temperature NMR study to have a substantial rotational barrier about the C-N bond¹²¹. Unfortunately, the ¹H spectrum of [29] displays an unresoluable and complex pattern in the NH and CH regions (Tables 9 and 10).

Cp(CO)₂FeCH(SMe)₂ (76) [2]

Reaction of $\{Cp(C0)_2Fe[CH(SMe)]\}CF_3S0_3$ with H_2O

Compound [4] is very sensitive to moisture and decomposes in water on contact. Upon closer study, it was found that [4] reacts with doubly-distilled, degassed water producing $[Cp(CO)_3Fe]CF_3SO_3$, [37], and a previously²⁷ uncharacterized product, $Cp(CO)_2FeCH_2SMe$, [7], which is identified by comparing its IR and ¹H NMR spectra with those of an authentic sample synthesized by the reaction of $[Cp(CO)_2Fe]^-$ and $CICH_2SMe^{63}$. The product ratio of [37]:[7] is 1:1. Moreover, MeSH is identified by GC to be the major organic product in that reaction (Eqn. 77).

$$\{ Cp(C0)_{2} Fe[CH(SMe)] \} CF_{3}SO_{3} \xrightarrow{H_{2}O} Cp(CO)_{2} FeCH_{2}SMe$$
(77)
[4] [7]
+
[Cp(CO)_{3} Fe] CF_{3}SO_{3}
[37]
+
MeSH

In understanding the mechanism of reaction 77, it is necessary to know the origin of the additional H in product [7]. Conceivably, [7] is the product of [4] and a hydride donor, presumably, H_2^0 or a derivative of [4]. When deuterium labelled $Cp(CO)_2Fe[CD(SMe)]^+$ is used in the reaction with H_2^0 , only the di-deuterated $Cp(CO)_2FeCD_2SMe$ is formed. This was established from the mass spectrum of this product. Although the parent ion is missing, two intense peaks, m/e 212, 184 which correspond to M^+ - CO and M^+ - 2CO, respectively, are characteristic of $Cp(CO)_2FeCD_2SMe$. Thus, the hydride in [7] stems from [4], not H_2^0 .

Mechanistic possibilities for reaction 77

Nucleophilic attack by H_2^0 on the C_{carb} of [4] is likely to be the initial step in reaction 77 (Scheme 6). Subsequent loss of MeSH gives a hydroxy carbene. Although intermediate A in Scheme 6 has not been isolated nor observed in reaction 77, a similar hydroxy alkyl carbene, $Cp(C0)_2Fe[C(0H)(Me)]^+$ 122, has been synthesized and shown to be in equilibrium with its acyl analog (Eqn. 78). Moreover,

Fe=Cp(CO)₂Fe

Scheme 6

 $Cp(NO)(PPh_3)ReCHO^{23}$ is reversibly protonated to its hydroxy carbene form, $Cp(NO)(PPh_3)Re[CH(OH)]^+$; thus, it is conceived that A could coexist with the formyl complex B. Collins and Roper¹⁹ reported that H_2O reacted with $(PPh_3)_2(CO)_2(C1)Os[CH(SMe)]^+$ to yield a stable formyl complex, $(PPh_3)_2(CO)_2(C1)OsCHO$.

$$Cp(CO)_{2}Fe=C \xrightarrow{OH^{+}}_{Me} Cp(CO)_{2}Fe-C \xrightarrow{O}_{Me} (78)$$

Although intermediate B was not detected by means of low temperature (-40°C) ¹H NMR in CD_2Cl_2 , it might be expected to be unstable and rapidly react further. Metal formyls have been shown to be excellent hydride donors². For instance²³, $Cp(NO)(PPh_3)ReCHO$ readily transfers its H⁻ to $Cp(NO)(PPh_3)ReCH_2^+$ to afford $Cp(NO)(PPh_3)ReCH_3$ and $Cp(NO)(PPh_3)ReCO^+$. Also, hydride transfer very similar to that in Scheme 6 has been postulated²⁴ in the reaction of $Cp(CO)_2Fe[CH(OMe)]^+$ and J⁻ (Eqn. 79). Thus, B (Scheme 6) probably transfers a hydride to

[4] to furnish the observed products. In that manner, the product ratio
of [37]:[7] is expected to be 1:1, as observed.

Reaction of [4] with MeOH

In an effort to replace the MeS[•] group in [4] with methoxide to form $Cp(CO)_{2}Fe[CH(OMe)]^{+}$, [4] reacted with MeOH. Instead of the expected product, [37] and [7] were obtained. The reaction is rapid when a 100-fold excess of methanol is used; the total yield of both products is 88%, and the [37]:[7] product ratio is approximately 60:40 (Eqn. 77). An examination of the gas phase of the reaction by GC reveals the presence of MeSH and CH_{L} , though, the latter was not positively verified by MS. When only 1-5 eqv. of MeOH is used for the reaction in CH_2Cl_2 , no reaction is observed. Even when a 100-fold excess of PhCH₂OH is allowed to react with [4], no reaction is observed. Thus, it is conceivable that H₂O is the primary reactant in the methanolysis reaction which then affords [37] and [7] (Eqn. 79), in spite of the careful drying of MeOH with Mg/I_2 . The different product distribution of [37]:[7] in the methanolysis (60:40) vs hydrolysis (1:1) may result from a secondary reaction between [4] and MeOH, which gives [37] and CH_{L} under the reaction conditions, possibly via [46] (Eqn. 80). Complex [46] was previously reported²⁴ and known to be stable in dry CH_3NO_2 and CH_2CI_2 , but it rapidly decomposed in wet solvents to Cp(CO), FeCH, and [37]. Its stability in MeOH was not mentioned, so it is not possible to draw any firm conclusions about the secondary reaction between [4] and MeOH (Eqn. 80).

$$Cp(CO)_{2}Fe[CH(SMe)]^{+} + MeOH/H_{2}O \longrightarrow [Cp(CO)_{2}Fe[CH(OMe)]^{+}] + [37] + [7]$$
[4]
[4]
[4]
[40% 40%
[37]
[37]
20%

${cp(c0)}_{2}Fe[CH(SMe)]CF_{3}SO_{3}$ with $CH_{2}N_{2}$

Diazomethane has been shown to attack the C_{carb} of terminal carbene complexes to produce olefins¹²³ or an η^2 -olefin complex¹²⁴. The complex, (CO)₅W[C(OMe)R] was found to react rapidly with CH₂N₂ to liberate free olefin and the W(CO)₅ moiety (Eqn. 81). It was postulated that the initial diazomethane attack was on the C_{carb} . Likewise, an iron complex reacted with CH₂N₂ to yield the corresponding η^4 -diene complex¹²⁴. (Eqn. 82). The slight variation in the latter reaction may be chiefly due to the stability of the iron diene product.

$$(CO)_{5}W=C + CH_{2}N_{2} \rightarrow [(CO)_{5}WC - R] \rightarrow ''W(CO)_{5}'' (81)$$

$$R = Ph, Me + CH_{2}N_{2} + CH_{2}N_{2} + CH_{2}=C(R)OMe + CH_{2}=C(R)OMe + N_{2}$$

When $CH_2N_2Et_20$ is added to a CH_2Cl_2 solution of [4], gas evolution (presumably N_2) is apparent; the yellow carbene solution turns deep orange, and two v(CO) absorptions (2063, 2020 cm⁻¹) are noted. After 30 min of reaction, the solution changes to light orange with a slight shift in the v(CO) bands (2062, 2019 cm⁻¹). After workup, 76% of $\{Cp(CO)_2Fe[SMe(CH=CH_2)]\}CF_3SO_3$,[38], is isolated; due to its reluctance to crystallize, only a small amount of needle-like red crystals (10%) were obtained (Eqn. 83); they have IR bands identical to those in the solution mixture. An ¹H NMR spectrum of [38] reveals that the vinyl protons display an ABX pattern and are shifted to lower field relative to those in the corresponding free olefin, MeSCH=CH₂¹²⁵. In contrast to the tendency of olefins to form n²-olefinic complexes of iron¹²⁶, the olefinic ligand in [38] is bonded to the iron through the sulfur^{68,127,128}. This structural assignment is consistent with its ¹³C spectrum which shows the vinyl carbons at 130.8 and 124.1 PPM

which are characteristic of unsatuated carbons 129 , whereas the corresponding carbons of η^2 -olefinic complexes of iron often occur below 100 PPM 126 .

Presumably, nucleophilic attack upon the C_{carb} of [4], elimination of N₂ producing the η^2 -thiomethoxyl ethylene complex, then rearrangement to the S-adduct is the reaction sequence which leads to [38]. The existence of the η^2 -olefin complex is uncertain since the deep orange transient species, which is most likely to be this postulated intermediate, has not been isolated nor fully characterized.

The replacement of a carbonyl ligand in an inherently unstable organometallic carbene complex with a better σ -donor ligand, such as a tertiary phosphine or phosphite, increases the stability of the resulting carbene derivative. Very often, the difference is remarkable. As mentioned earlier, [4] decomposes rapidly in a wet environment. Thus, we explored the possibility of synthesizing mono-substituted phosphine and phosphite derivatives of [4] in the hope that these complexes would be more manageable.

It has been shown that [1] is readily decarbonylated in acetonitrile under photolytic conditions¹³⁰, yielding a stable deep red complex, {Cp(C0)(MeCN)Fe[C(SMe)₂]}PF₆. The acetonitrile ligand in this complex may simply be replaced by PPh₃ or P(OPh)₃ to afford {Cp(C0)(PPh₃)Fe[C(SMe)₂]}PF₆,[39], and {Cp(C0)(P(OPh)₃)Fe[C(SMe)₂]}PF₆, [42], respectively (Eqn. 84).

$$\{Cp(CO)_{2}Fe[C(SMe)_{2}]\}PF_{6} \xrightarrow{254 \text{ nm}} \{Cp(CO)(MeCN)Fe[C(SMe)_{2}]\}PF_{6}$$
(84)
[1]
L
L
[39] PPh_{3}
[42] P(OPh)_{3} (84)

However, when [4] is photolyzed with 254 nm UV light in acetonitrile for an hour, decomposition is apparent, and the decomposition product has not been characterized. An attempt to prepare $Cp(CO)(MeCN)Fe[CH(SMe)]^+$ using a milder decarbonylating agent, $Me_3NO^{111-113}$, which has been demonstrated to be effective in liberating a carbonyl ligand from [1] and [25], only led to an unisolable, complex with v(CO) bands at 2012, 1956 cm⁻¹ in CH_2Cl_2 .

Because of the unavailability of $\{Cp(CO)(MeCN)Fe[CH(SMe)]\}CF_3SO_3$, attention turned to [39] and [42] as precursors. Like [1], both complexes smoothly react with $(Et_3BH)Li$ to provide $Cp(CO)(PPh_3)FeCH(SMe)_2$, [40], (62%) and $Cp(CO)(P(OPh)_3)FeCH(SMe)_2$,[43], (76%) respectively. In contrast, Li[A1(OBu^t)_3H] fails to react with either [39] or [42]. Complexes [40] and [43] are isolated as oily substances which are mildly susceptible to air oxidization; their IR data are summarized in Table 14. The addition of CF_3SO_3H to an Et_2O solution of [40], gives an oily $\{Cp(CO)(PPh_3)Fe[CH(SMe)]\}CF_3SO_3, [41], (71%)$. Likewise,

Complex	IR	. ν(CO) cm ⁻¹		Ср
Cp(CO)PPh ₃ FeCH(SMe) ₂	[40]	1960 ^a		
Cp(CO)P(OPh) ₃ FeCH(SMe) ₂	[43]	1963 ^a		
{Cp(C0)PPh ₃ Fe[CHSMe]}CF ₃ S0 ₃	[41]	2006 ^b	4.84	(d, J _{PH} =1.10) ^c
{Cp(CO)P(OPh) ₃ Fe[CHSMe]}CF ₃ SO ₃ ^d	[44]	2011 ^b	4.79	(d, J _{PH} =1.10) ^c
{Cp(CO)P(OPh) ₃ Fe[CH(NEt ₂)]}CF ₃ SO ₃ ^e	[45]	1981 ^b	4.82	(d, J _{PH} =1.10) ^C

Table 14.	IR and ^I H NMR	data for the	Cp(CO)LFe[CH(SMe), complexes and	
	their carbene	derivatives	Σ	

.

- -

^a Hexane.	
^b CH ₂ C1 ₂ .	
^C CD ₃ CN.	
^d The C _{carb} resonates at 320.6 (d, J_{PC} =33.21) in	¹³ C NMR.
^e The C _{carb} resonates at 239.0 (d, J_{PC} =39.07) in	¹³ C NMR.

`

сн ¹ н	SMe	Other
14.94	2.99 (d, J _{PH} =0.73)	7.4 (m, Ph)
14.92	<u>۵.96</u>	7.27 (m, Ph)
11.36 (J _{PH} =5.13)		7.41 (m, Ph), 4.11; 3.89 [q, J _{HH} =7.33, NCH ₂], 1.44; 1.30 [t, J _{HH} =7.33, NCH ₂ Me]

.

 $\{Cp(CO)(P(OPh)_3)Fe[CH(SMe)]\}CF_3SO_3, [44], forms [43].$ As expected, [41] and [44] are more stable to moisture, though, they are reluctant to crystallize. They have been characterized by their IR and ¹H NMR spectra, which are summarized in Table 14.

Spectral properties

As does [4], both [41] and [44] exhibit low field proton resonances at 14.94 and 14.92 δ in CD $_{\rm 3}{\rm CN}$, which are characteristic of carbene hydrogen atoms. Owing to the enhanced stability brought about by the presence of L, the ¹³C spectrum of [44] could also be obtained. In it, the C_{carb} is found as a doublet at 320.5 PPM (J_{PC} = 33.21 Hz) in CD_3CN , which is approximately 46 PPM downfield from the only other ^{13}C resonances reported for a secondary thiomethoxyl carbene complex, $\{Cp(NO)(PPh_3)Re[CH(SMe)]\}CF_3SO_3^{26}$. Interestingly, the spectrum also reveals the cyano carbon of acetonitrile, which is a singlet at 118.2 PPM in pure MeCN, as a broad peak centered at 132.2 PPM. The broadening and downfield shift of the CN carbon resonance suggests that there is a weak interaction between the nitrogen lone pair electrons of the acetonitrile and the electrophilic C_{carb} of [44]. To our knowledge, an acetonitrile metal carbene adduct complex has never been isolated; however, it was detected in the gas phase by ion cyclotron resonance spectroscopy. Stevans and Beauchamp¹³¹ demonstrated that Cp(CO)FeCH₂NCMe⁺ was the product when $Cp(CO)_{2}FeCH_{2}^{+}$, generated in stiu, reacted with MeCN in the gas phase (Eqn. 85).

$$Cp(CO)_2 FeCH_2^+ + MeCN \longrightarrow Cp(CO)_2 FeCH_2 NCMe^+$$
 (85)

Synthesis of

$$\{c_{P}(C0)(P(0Ph)_{3})Fe[CH(NEt_{2})]\}CF_{3}SO_{3}$$

As anticipated, [44] reacts smoothly with diethylamine to afford $\{Cp(CO)(P(OPh)_3)Fe[CH(NEt_2)]\}CF_3SO_3,[45], in 56\% yield (Eqn. 86). As in [23], [45] is a pale yellow, air-stable complex which shows two distinctive methylene and methyl groups in its ¹H and ¹³C NMR spectra. The inequivalency of the ethyl groups in [45] indicate the importance of N to C_{carb} P-P <math>\pi$ -backbonding in the complex. The pertinent spectral data for [45] are summarized in Table 14.

{
$$c_{P}(CO)P(OPh)_{3}Fe[CH(SMe)]$$
}CF_{3}SO_{3} + HNEt_{2}
[44]
{ $c_{P}(CO)P(OPh)_{3}Fe[CH(NEt_{2})]$ }CF_{3}SO_{3} (86)

[45]

REFERENCES

-

- -

۶.	Brady, R. C.; Pettit, R. J. Am. Chem. Soc. 1981, 103, 120/.
2.	Gladysz, J. A. <u>Adv. Organomet</u> . <u>Chem</u> . 1982, <u>20</u> , 1.
3.	Storch, H. H.; Golumbia, N.; Anderson, R. B. "The Fischer Tropsch and Related Synthesis"; Wiley: New York, 1951.
4.	Master, C. <u>Adv. Organomet. Chem</u> . 1976, <u>17</u> , 61.
5.	Muetterties, E. L.; Stein, <u>J. Chem. Rev</u> . 1979, <u>79</u> , 479.
6.	Pruett, R. L. <u>Science</u> 1981, <u>211</u> , 11.
7.	Schrock, R. R. J. <u>Am. Chem. Soc</u> . 1974, <u>96</u> , 6796.
8.	Brookhart, M.; Tucker, J. R.; Flood, T. C.; Jensen, J. <u>J</u> . <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1980, <u>102</u> , 1203.
9.	Kegley, S. E.; Brookhart, M.; Husk, G. R. <u>Organomet</u> . 1982, <u>1</u> , 760.
10.	Fong, C. W.; Wilkinson, G. J. <u>J. Chem</u> . <u>Soc. Dalton Trans</u> . 1975, 1100.
11.	Christian, D. F.; Clark, H. C.; Stepaniak, R. F. <u>J</u> . <u>Organomet</u> . <u>Chem</u> . 1976, <u>112</u> , 227.
12.	Cetinkaya, B.; Lappert, M. F.; Mclaughlin, G. M.; Turner, K. J. <u>Chem. Soc. Dalton Trans</u> . 1974, 1591.
13.	Cetinkaya, B.; Lappert, M. F.; Turner, K. J. <u>Chem. Soc. Chem</u> . <u>Comm</u> . 1972, 851.
14.	Hartshorn, A. J.; Lappert, M. F.; Turner, K. <u>J. Chem. Soc. Dalton</u> <u>Trans</u> . 1978, 348.
1 5.	Christian, D. F.; Clark, G. R.; Roper, W. R. <u>J. Organomet</u> . <u>Chem</u> . 1974, <u>81</u> , C7.
16.	Christian, D. F.; Roper, W. R. <u>J</u> . <u>Organomet</u> . <u>Chem</u> . 1974, <u>80</u> , C35.
17.	Treichel, P. M.; Stenson, J. P.; Benedict, J. J. <u>Inorg</u> . <u>Chem</u> . 1971, <u>10</u> , 1183.

- Christian, D. F.; Clark, H. C.; Stepaniak, R. F. J. <u>Organomet</u>. <u>Chem</u>. 1976, <u>112</u>, 209.
- 19. Collins, T. J.; Roper, W. R. J. Organomet. Chem. 1978, 159, 73.
- Barefield, E. K.; Carrier, A. M.; Serpelak, D. J.; Van Deever,
 D. G. <u>Organomet</u>. 1982, <u>1</u>, 103.
- Christian, D. F.; Clark, G. R.; Roper, W. R.; Water, J. M.; Whittle, K. R. J. Chem. Soc. Chem. Commum. 1972, 458.
- 22. Pombeiro, A. J. L.; Richards, R. L. <u>Trans. Met. Chem</u>. 1980, <u>5</u>, 55.
- Tam, W.; Lin, G. Y.; Wong, W. K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1982, <u>104</u>, 141.
- 24. Cutler, A J. Am. Chem. Soc. 1979, 101, 604.
- 25. Wolczanski, P. T.; Threlkel, R. W.; Bercaw, J. E. <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1979, <u>101</u>, 218.
- McCormick, F. B.; Gladysz, J. A. J. <u>Organomet</u>. <u>Chem</u>. 1981, <u>218</u>, C57.
- 27. McCormick, F. B.; Angelici, R. J. Inorg. Chem. 1981, 20, 1111.
- Battioni, J. P.; Chottard, J. C.; Mansuy, D. <u>Inorg</u>. <u>Chem</u>. 1982, <u>21</u>, 2056.
- 29. Andersen, R. A.; Chistholm, M. H.; Gibson, J. F.; Reichert, W. W.; Rothwell, I. P.; Wilkinson, G. <u>Inorg</u>. <u>Chem</u>. 1981, <u>20</u>, 3934.
- Ruppercht, G. A.; Messerle, L. W.; Fellmann, J. D.; Schrock, R. R. J. <u>Am. Chem. Soc</u>. 1980, 102, 6236.
- 31. Schrock, R. R.; Messerle, L. W.; Wood, C. D.; Guggenberger, C. J. J. Am. Chem. Soc. 1978, 100, 3793.
- 32. Bodnar, T.; Cutler, A. R. J. Organomet. Chem. 1981, 213, C31.
- 33. Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1980, 102, 2455.
- Cutler, A.; Fish, R. W.; Fiering, W. P.; Rosemblum, M. J. <u>Am</u>. <u>Chem. Soc</u>. 1972, <u>94</u>, 4354.

35.	Wood, C. D.; Mclain, S. J.; Schrock, R. R. <u>J</u> . <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1979, <u>101</u> , 4558.
36.	Schrock, R. R.; Fellmann, J. D. <u>J. Am. Chem. Soc</u> . 1978, <u>100</u> , 3359.
37.	Fellmann, J. D.; Ruppercht, G. A.; Wood, C. D.; Schrock, R. R. J. <u>Am. Chem. Soc</u> . 1978, <u>100</u> , 5964.
38.	Wengrovius, J. H.; Schrock, R. R.; Churchill, M. R.; Missert, J. R.; Young, W. J. <u>J. Am. Chem</u> . <u>Soc</u> . 1980, <u>102</u> , 4515.
39.	Sharp, P. R.; Schrock, R. R. <u>J</u> . <u>Organomet</u> . <u>Chem</u> . 1972, <u>171</u> , 43.
40.	Schrock, R. R. <u>Acc. Chem. Res</u> . 1979, <u>12</u> , 98.
41.	Caulton, K. G.; Marsella, J. A.; Folting, K.; Kuffman, J. C. <u>J. Am. Chem. Soc</u> . 1981, <u>103</u> , 5596.
42.	Kiel, W. A.; Lin, G. Y.; Gladysz, J. A. <u>J. Am</u> . <u>Chem</u> . <u>Soc</u> . 1980, <u>102</u> , 3299.
43.	Casey, C. P.; Polichnowski, S. W.; Schusterman, A. J.; Jones, C. R. <u>J</u> . <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1979, <u>101</u> , 7282.
44.	Messerle, L. W.; Jennische, P.; Schrock, R. R.; Stucky, G. J. <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1980, <u>102</u> , 6744.
45.	Brookhart, M.; Nelson, G. O. <u>J. Am. Chem. Soc</u> . 1977, <u>99</u> , 6099.
46.	Fischer, E. O.; Frank, A. <u>Chem. Ber</u> . 1978, <u>111</u> , 3740.
47.	Brown, F. J. <u>Prog. Inorg. Chem</u> . 1981, <u>27</u> , 1.
48.	Fischer, E. O. <u>Pure Appl</u> . <u>Chem</u> . 1972, <u>30</u> , 353.
49.	Brookhart, M; Tucker, J. R. J. <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1981, <u>103</u> , 979.
50.	Brookhart, M.; Tucker, J. R.; Husk, G. R. <u>J. Organomet. Chem</u> . 1980, <u>193</u> , C23.
51.	Johnson, C. D. "The Hammett Equation," Cambridge University Press: New York, 1973.
52.	Mann, B. E.; Taylor, B. F. ¹¹³ C NMR for Organometallic Compounds, ¹¹ Academic Press: New York, 1981.
53.	Butler, W. M.; Enemark, J. H. <u>J. Organomet</u> . <u>Chem</u> . 1973, <u>49</u> , 233.

·

- 54. Casey, C. P.; Burkhardt, T. J.; Bunnell, C. A.; Calabrese, J. C. J. Am. Chem. Soc. 1977, 99, 2127.
- 55. Fierser, L. F.; Fierser, M. "Reagants for Organic Synthesis," Wiley: New York, 1967; Vol. 1, p. 191, Procedure B.
- 56. Bardwell, F. G.; Pitt, B. M. J. Am. Chem. Soc. 1955, 77, 572.
- 57. Houben, J.; Schultz, K. M. L. Chem. Ber. 1911, 44, 3235.
- 58. Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offermann, K. Angew. Chemie Int. Ed. Eng. 1965, 4, 472.
- 59. Olofson, R. A.; Walinsky, S. W.; Marino, J. P.; Jernow, J. L. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. 1968, <u>90</u>, 6554.
- 60. Angelici, R. J. "Synthesis and Technique in Inorganic Chemistry," 2nd ed.; Saunders: Philadelphia; 1977; pp. 152-155.
- 61. Plotkin, J. S.; Shore, C. G. Inorg. Chem. 1981, 20, 284.
- 62. Gladysz, J. A.; Williams, G. M.; Tam, W.; Johnson, D. L. J. Organomet. Chem. 1977, 140, Cl.
- 63. King, R. B.; Bisnette, M. B. Inorg. Chem. 1965, 4, 486.
- 64. Jacboson, R. A. J. Appl. Crystallogr. 1976. 9, 115.
- 65. Lapp, R. L.; Jacobson, R. A. "ALLS, A Generalized Crystallographic Least Squares Program," U.S.D.O.E. Report; Iowa State University and Ames Laboratory; Ames Laboratory, Ames, Iowa, 1979.
- Gromer, D. T.; Waber, J. T. "International Table for X-Ray Crystallography," Kynock Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp. 71-97.
- 67. Templeton, D. H. "International Tables for X-Ray Crystallography," Kynock Press: Birmingham, England; 1962, Vol. III, Table 3.3.2c, pp. 215-6.
- 68. Dombek, D. B.; Angelici, R. J. Inorg. Chim. Acta 1973, 7, 345.
- 69. Reger, D. L.; Coleman, C. J. Organomet. Chem. 1977, 131, 153.
- 70. Dessy, R. E.; Pohl, R. L.; King, R. B. <u>J. Am. Chem. Soc</u>. 1966. 88, 5121.

71.	O'Connor, E. J.; Helquist, P. J. Am. Chem. Soc. 1982, <u>104</u> , 1869.
72.	Reger, D. L.; Culbertson, E. C. <u>J. Organomet</u> . <u>Chem</u> . 1977, <u>131</u> , 297.
73.	McCormick, F. B.; Angelici, R. J.; Pickering, R. A.; Wagner, R. E.; Jacobson, R. A. <u>Inorg. Chem</u> . 1981, <u>20</u> , 4108.
74.	Bennett, M. J.; Cotton, F. A.; Davison, A.; Faller, J. W.; Lippard, S. J.; Morehouse, S. M. <u>J. Am. Chem. Soc</u> . 1966, <u>88</u> , 4371.
75.	Churchill, M. R.; Ni Chang, S. W. Y. <u>J</u> . <u>Am. Chem</u> . <u>Soc</u> . 1973. <u>95</u> , 5931.
76.	Pope, L.; Sommerville, P.; Laing, M.; Hindson, K. J.; Moss, J. R. J. Organomet. Chem. 1976, <u>112</u> , 309.
77.	Grompper, R.; Bartmann, E.; Noth, H. <u>Chem. Ber</u> . 1979, <u>112</u> , 218.
78.	Ariyaratue, J. K. P.; Bierrum, A. M.; Green, M. L. H.; Ishaq, M.; Prout, C. K.; Sqnwick, M. G. <u>J. Chem</u> . <u>Soc. A</u> 1969, 1309.
79 .	Kojima, T.; Nichikawa, T. J. <u>J. Phys. Soc. Jpn</u> . 1957, <u>12</u> , 680.
80.	Pierce, L.; Hayaski, M. J. <u>J. Chem</u> . <u>Phys</u> . 1961, <u>35</u> , 479.
81.	Stein, J.; Fackler, J. P., Jr.; Paparizos, C.; Chen, H. W. <u>J. Am. Chem</u> . <u>Soc</u> . 1981, <u>103</u> , 2192.
82.	Bannett, B. C.; Kruger, C. J. <u>Cryst</u> . <u>Mol</u> . <u>Struct</u> . 1972, <u>2</u> , 271.
83.	Kermode, N. J.; Lappert, M. F.; Skelton, B. W.; White, A. H.; Holton, J. <u>J. Organomet</u> . <u>Chem</u> . 1982, <u>228</u> , C71.
84.	Buchanan, R. K.; Pierpont, C. G. <u>Inorg</u> . <u>Chem</u> . 1979, <u>12</u> , 3608.
85.	Pickering, R. A.; Jacobson, R. A.; Angelici, R. J. <u>J. Am</u> . <u>Chem</u> . <u>Soc</u> . 1981, <u>103</u> , 817.
86.	Baldwin, J. C.; Keder, N. L.; Strouse, C. E.; Kaska, W. C. <u>Z</u> . <u>Naturforsch</u> . 1980, <u>35B</u> , 1289.
87.	Angelici, R. J.; Matachek, J. R. Unpublished results, Dept. of Chem., Iowa State University, Ames, IA.
88.	Seebach, D.; Beck, A. L.; Stegmann, H. B. <u>Tetrahedron</u> <u>Lett</u> . 1970 1933.

• ...

89.	Casey, C. P.; Burkhardt, T. J. <u>J. Am. Chem. Soc</u> . 1972, <u>94</u> , 6543.
90.	Schuer, O. J.; Jungmann, H. <u>Z. Naturforsch</u> . 1981, <u>36B</u> , 1663.
91.	Kreissel, H.; Fischer, E. O.; Kreiter, C. G.; Fischer, H. <u>Chem</u> . <u>Ber</u> . 1973, <u>106</u> , 1262.
92.	Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds," 3rd ed.; Wiley: New York, 1974; p. 180.
93.	Pickering, R. A.; Angelici, R. J. <u>J</u> . <u>Organomet</u> . <u>Chem</u> . 1982, <u>225</u> , 253.
94.	Kreissel, F. R.; Fischer, E. O.; Kreiter, C. G.; Weiss, K. <u>Angew. Chimie Int. Ed. Eng</u> . 1973, <u>12</u> , 563.
95.	Kreissel, F. R.; Fischer, E. O. <u>Chem</u> . <u>Ber</u> . 1974, <u>107</u> , 183.
96.	McCormick, F. B.; Angelici, R. J. <u>Inorg</u> . <u>Chem</u> . 1981, <u>20</u> , 1118.
97.	Pickering, R. A.; Angelici, R. J. <u>Inorg</u> . <u>Chem</u> . 1981, <u>20</u> , 2977.
98.	McCormick, F. B.; Angelici, R. J. <u>Inorg</u> . <u>Chem</u> . 1979, <u>18</u> , 1231.
99.	Ranft, J.; Dahne, S.; <u>Helv. Chim. Acta</u> 1964, <u>47</u> , 1160.
100.	Steinmetz, A. L.; Hershberger, S. S.; Angelici, R. J. Unpublished results, Dept. of Chemistry, Iowa State University, Ames, IA.
101.	March, J. "Advanced Organic Chemistry," 2nd ed.; McGraw-Hill: New York; 1977; Chapter 17.
102.	Wolczanski, P. T.; Bercaw, J. E. <u>J. Am</u> . <u>Chem</u> . <u>Soc</u> . 1979, <u>121</u> , 6450.
103.	Schilling, B. E. R.; Hoffman, R.; Lichtenberger, D. L. <u>J</u> . <u>Am.</u> <u>Chem. Soc</u> . 1979, <u>101</u> , 582.
104.	Schilling, B. E. R.; Hoffman, R.; Faller, J. W. <u>J</u> . <u>Am</u> . <u>Chem</u> . <u>Soc</u> . 1979, <u>101</u> , 592.
105.	Kastic, N. M.; Fenske, R. F. <u>Organomet</u> . 1982, <u>1</u> , 974.
106.	Patai, S. "The Chemistry of the Carbon-Nitrogen Double Bond," Wiley: New York, 1970; Chapter 9.

,

- 107. Lambert, J. B.; Shurvell, H. F.; Verbit, L.; Cooks, R. G.; Stout, G. H. "Organic Structural Analysis"; Macmillan: New York; 1976; p. 72.
- 108. Chang, C. F.; Fairless, B. J.; Willcott, M. R. J. <u>Mol</u>. <u>Spectrosc</u>. 1967, <u>22</u>, 112.
- 109. Allinger, N. L.; Eliel, E. L. "Topics in Stereochemistry"; Wiley: New York: 1973; V. 7, pp. 329-358.
- 110. March, J. "Advanced Organic Chemistry," 2nd ed.; McGraw Hill: New York; 1977; p. 805.
- 111. Shro, Y.; Hazum, E. J. Chem. Soc. Chem. Commum. 1975, 829.
- 112. Gladysz, J. A.; Selover, J. C.; Strouse, C. E. J. <u>Am. Chem. Soc.</u> 1978, <u>100</u>, 6766.
- 113. Blumer, D. J.; Barnett, K. W.; Brown, T. L. J. Organomet. Chem. 1979, <u>173</u>, 71.
- 114. Green, M. L. H.; Street, C. N.; Wilkinson, G. Z. <u>Naturforsch</u>. 1959, <u>14B</u>, 738.
- 115. Saegusa, T.; Ito, Y; Kabayashi, S.; Hirota, K.; Yoshioka, H. <u>Tetrahedron Lett</u>. 1966, 6121.
- 116. Hesse, M.; Leuzinger, F. Adv. Mass Spectrom. 1968, 4, 163.
- 117. Patai, S. "The Chemistry of Amidines and Imidate"; John Wiley and Son: New York; 1975; pp. 75-79.
- 118. Fischer, E. O.; Kollmeier, H. J. Chem. Ber. 1971, 104, 1339.
- 119. Klabunde, U.; Fischer, E. O. J. Am. Chem. Soc. 1967, 89, 7141.
- 120. Fischer, E. O.; Offhaus, K. Chem. Ber. 1969, 102, 2449.
- 121. Moser, E.; Fischer, E. O. Naturwissenchaften 1967, 54, 615.
- 122. Green, M. L. H.; Hurley, C. R. J. Organomet. Chem. 1967, 10, 188.
- 123. Casey, C. P.; Bertz, S. H.; Burkhardt, T. J. <u>Tetrahedron Lett</u>. 1973, 1421.
- 124. Mitsudo, T.; Watanabe, H.; Watanabe, K.; Watanabe, Y.; Takegami, Y. J. Organomet. Chem. 1981, 214, 87.
- 125. Ceccarelli, G.; Chiellini, E. Org. Magn. Reson. 1970, 2, 409.
- 126. Faller, J. S.; Johnson, B. V. J. Organomet. Chem. 1975, 88, 101.
- 127. Sawai, T.; Martin, J. P.; Butler, I. S.; Simkin, D. J. Phys. (Paris), 1974, 35, Suppl. 6, 247.
- 128. William, W. E.; Lalor, F. J. J. Chem. Soc. 1973, 1329.
- 129. Kalabin, G. A.; Trofimov, B. A.; Bzhezovskii, V. M.; Kushnarev,
 D. F.; Amasova, S. V.; Gusmova, N. K.; Al'pert, M. L. <u>Izu</u>. <u>Akad</u>. <u>Nauk</u>. 1975, <u>24</u>, 501.
- 130. McCormick, F. B.; Angelici, R. J. <u>J. Organomet. Chem</u>. 1981, <u>205</u>, 79.
- 131. Stevans, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 2584.

APPENDIX I. FINAL POSITIONAL PARAMETERS AND THEIR ESTIMATED

STANDARD DEVIATIONS (IN PARENTHESES)^a FOR

ł

		<u> </u>	
Atom	X	. Y	Ζ.
Fe	0.2654(1)	0.3525(1)	0.2579(1)
S	0.1779(2)	0.3879(2)	0.0648(1)
Ρ,	0.4451(2)	0.3198(2)	0.1107(1)
0,	0.4991(5)	0.4376(4)	0.1160(4)
02	0.5394(6)	0.2489(5)	0.1673(4)
03	0.4634(6)	0.2823(6)	0.0219(4)
04	0.0277(8)	0.2254(7)	0.2486(5)
0 ₅	0.4294(8)	0.1764(6)	0.3287(4)
cl	0.2864(8)	0.3096(7)	0.1356(5)
°2	0.6396(10)	0.4476(9)	0.1032(7)
°3	0.6764(10)	0.2538(8)	0.1488(6)
c ₄	0.6033(10)	0.2930(11)	0.0007(6)
с ₅	0.6853(9)	0.3356(8)	0.0755(6)
c ₆	0.8297(11)	0.3414(10)	0.0569(7)
°7	0.1211(11)	0.2733(8)	0.2503(6)
с ₈	0.3661(11)	0.2441(8)	0.2981(6)
c ₉	0.2904(12)	0.5205(8)	0.2314(7)

 $\{Cp(CO)_2 Fe[CH(SMe)P(OCH_2)_3 CMe]\}PF_6$

^aPositional parameters are listed in fractional unit cell coordinates; H_6 and H_{14} positions were not calculated.

Atom	X	Y	Z
с ₁₀	0.1706(11)	0.5038(8)	0.2647(7)
c	0.1927(12)	0.4592(8)	0.3422(7)
с ₁₂	0.3336(13)	0.4475(9)	0.3622(6)
с ₁₃	0.3902(11)	0.4849(8)	0.2896(7)
c ₁₄	0.1492(13)	0.2976(12)	0.9763(7)
P_2	0.2111(3)	0.9609(3)	0.1274(2)
F	0.1081(9)	0.0540(7)	0.1006(6)
F ₂	0.3126(9)	0.8683(6)	0.1571(5)
F ₃	0.2901(10)	0.0413(7)	0.1861(7)
F4	0.1344(13)	0.9374(11)	0.2079(8)
F ₅	0.2873(15)	-0.0130(16)	0.0583(8)
F ₆	0.1252(16)	0.8784(10)	0.0795(12)
н,	0.2625	0.2266	0.1406
H _{2a}	0.7026	0.4952	0.1413
H _{2b}	0.5804	0.4943	0.0622
H _{3a}	0.7318	0.1852	0.1506
H _{3b}	0.6682	0.2800	0.2094
H _{4a}	0.5952	0.3489	-0.0467
H	0.6457	0.2250	-0.0206

Atom	x	Y	Z
H ₉	0.3029	0.5536	0.1735
H ₁₀	0.0791	0.5224	0.2352
H	0.1209	0.4373	0.3805
H ₁₂	0.3821	0.4184	0.4171
^H 13	0.4896	0.4855	0.2815

APPENDIX 2. THERMAL PARAMETERS (1×10^{-4}) AND THEIR ESTIMATED STANDARD DEVIATIONS (IN PARENTHESES) FOR

Atom	B ₁₁	^B 22	^B 33	^B 12	^B 13 .	^B 23
Fe	88(1)	53(1)	35 (0)	-2(1)	13(0)	-1(0)
S	90(2)	91(2)	38(1)	8(2)	5(1)	4(1)
P	79(2)	54(1)	31(1)	2(1)	10(1)	-1(1)
01	76 (6)	51(4)	64(3)	-1(4)	26(4)	5(3)
°2	91(7)	84(6)	56(3)	11(5)	13(4)	24(3)
⁰ 3	88(8)	140(8)	49(3)	-6(6)	21(4)	-21(4)
04	145(11)	112(8)	77(4)	-45(8)	29(6)	-7(5)
0 ₅	183(12)	82(6)	49(3)	38(7)	4(5)	10(4)
c,	62(9)	61(7)	37(4)	-9(6)	11(5)	-3(4)
¢2	89(12)	89(9)	63(6)	17(9)	27(7)	18(6)
с ₃	101(12)	86(9)	46(5)	20(8)	17(6)	24(5)
c ₄	88(12)	168(14)	46(5)	-10(11)	24(6)	-32(7)
°5	72 (10)	86(9)	40(4)	0 (8)	14(5)	1(5)
c ₆	99(12)	111(11)	67(6)	20(10)	34(7)	6(6)
с ₇	123(13)	67(8)	50(5)	-4(9)	27(7)	- 5(5)
с ₈	128(14)	67(8)	40(5)	-3(9)	10(7)	-8(5)
c ₉	151 (15)	50(7)	52(5)	- 19 (9)	6(7)	-5(5)

 $\{C_{P}(CO)_{2}Fe[CH(SMe)P(OCH_{2})_{3}CMe]\}PF_{6}$

Atom	^B 11	^B 22	^B 33	^B 12	^B 13	^B 23
с ₁₀	114(13)	58(8)	59(6)	13(8)	11(7)	-6(5)
с ₁₁	156(16)	72(9)	51(6)	-16(9)	16 (8)	-22(6)
C ₁₂	171(17)	88(10)	41(5)	-19(10)	8(8)	-12(5)
C ₁₃	123(13)	56(7)	61(6)	-6(8)	6(7)	-16(5)
c ₁₄	154(17)	175(15)	47(5)	7(1)	-8(8)	- 52(8)
P2	138(4)	101(3)	61(2)	0(3)	I(2)	- 9(2)
۶	224(13)	172(10)	114(6)	36 (9)	-13(7)	8(6)
F ₂	233(13)	138(8)	93(5)	70 (8)	6(6)	5(5)
F3	270(16)	152(10)	156(8)	-3(10)	-83(10)	-48(7)
F ₄	328(22)	318(18)	146(9)	54(17)	87(12)	95(11)
FS	432(31)	560 (32)	143(9)	220 (27)	141(15)	193(15)
F ₆	436(30)	173(13)	295(18)	40(15)	-189(20)	-111(12)

.

.

APPENDIX 3. STRUCTURAL FACTORS FOR ${C_{P}(CO)}_{2}Fe[CH(SMe)(P(OCH_{2})_{3}CMe)]}PF_{6}$

-332	2	111		121	239	R ;	124	144	.116	-23	-114	51	161		-117	191	-37		L L	80	-17	262	182	2	0 9	-15	-127	F-	8 i		126	-36	-		334	135	5	221	5	201	31	327	82 T.	12	3 :	990	-74	27	101-
335 -	8 7	e [112	540	5 F	8		5	30	. 901	8	167		100	63	80	ŗ		51	6	504	159			102	129 -	38		000	131	38	99		382	106	8		200	194	86	307		200	2	202	22	42	. 69
ņ	m,i	n i	N -	- 0	6	N	N 1	 N	v m	Ð	-	æ		~ 0 @		0	-	,		. N	-	-	- (2 9			ċ	<u>ب</u>		. ŗ.	ø	و ب	- • •	ທີ	ŝ	ភ្.		r 4	ň	ņ	Ņ.	N -		-		• N	m	m
N	80 (•	 n c	0	10	ę.	ĥ	N 6	? ^	ŗ	4	Ň	<u>-</u>		ę	1	0	•	, I	-	Ξ	.				-	1 60	•	~	e 1	• •	•	~	 		•	•		10	-	80	-	10 4	, • ¢		2 1	Ŷ	4	ņ
N		ο.	n a	o -s		-		e 1	- N	•	8	m	eo 4	* -	- 10	0		ю. к	.	ņ	4			Ļ) 6 0	N	N	a0 (ہ م	• •	2	æ (io c	, a	o,	<u>ب</u>	a r 19	റെ	0	~		ιņ (י ۲۰۰	0 1	n o	• -	80	4
12	-	= ;			22	5	n 1			ŝ	-14	-12	•		1	-	1			. 0	ņ	î		Ŀ		ì	4	80	•		-10	~	22) 6 0	ŝ				15	-30	4	1	P 4	0 (2.0	10	-12	12
96	1	100	595		201	72	7		12	6.7	115	72	80 d 47 (7 K	80	5	0	-		108	58	80		p î		52	126	85	0	222	146	61	216	210	5	68	153	0	808	120	281	424	4 # - 4	0 4	60 I		239	69	110
Ŷ	Ŷ	ar i		1	'n	n I			4 N	7	7	-	~	e 10	ŝ	ŝ	•	r 1	- 0	2	=	11		, "	× 0	: 7		-1	2		Ŷ	î	Ŷ	10 a) 10	60 1	en i			2	۰ •	Ŷ	φ.	0 4 1 1	ŝ	îi	1 3	4 1	4
0.	-	- '	س و	0 0	N	4	•	2.	• *1	-	N	5	Ŷ		1	Ŷ	Ŷ	4	1	1	7	0		:	I -	• •	n	۲	m .	a -	• •	•	~	~) 4	1	60 ·	1	ሳ ቁ	~	m	۲	80 (N 4			4 14	· m	10
122	80	4		426	100	906	10	211	0 1 1 1 1 1 1	194	-35	133	192	202	207	190	516	522		20	351	260	123			137	214	375	120	6	88	8	124	5 G	R		Ľ.	ទីរ	126	18-	19	68-	501	2	237		104	-20	76
i S	4	N -	। उन्ध उन्ह		. 3		1 5 (- 91	ŝ	20	1 4 8		: ::	- 2	ີ ທີ	7 2 :		8	5	*	5		N 12 87 X	20	88	20	- 21		. 6	89	*		2	•	6	5	+	0	54	2	8	8 I		3,0	100	1 47	10
1		_		- ñ		ι. Γ	N -	~ •	 	<u>م</u>	ž				0 0	Ň -	Ň	ñ ; 0 /	i č		ñ	i∾ 	- 	ñ		 	Ň	in In		~ ~	• • •		•		•	ĭ II	J							, 1	Ñi Na I	•			
- 1	ĩ n	। र ।	ĩ'i ► c	i i V M	1 1 0 0	T N	ן יי	ī 1 ~ r	1 T	ī m	1	7 0	й 	i i N M) (T	। ब	î o	ι Γ		, iù	ņ	Ņ	-	- 1	۰ ۱	s in	ņ	Ň	0		- 10	ņ	7	-		-	I	-		4	- T - T	ĩ m	7 ·	1 N 1	n i	1 - 1) T - N	۲ س	т т
		_				_	.					•		. .		_	_			•		•	•		•	•			_							-	~	•				•		_					
-55	231	-106		Ĩ,	. 60	ŝ	-120		-270	-10	156	2	i i		200	Š	-114	-16.		0	e i	-121	2				-16	-310	4	61-	9	-17	176	1	124	-140	206			1	144	152	101-	0		č	2 7	- o-	õ
50	223	102		- 6	87	56	122	222	252	80	152	1	101		265	-	4				102	104	66	44		- 4	115	365	0	195	808	165	173	N 10 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1 ■ 1	421	149	238	108		127	141	104	108	99		<u>.</u>	2 6	- -	76
ŝ	0	9	1	j.	: <u>0</u>	۴	Ŷ		0 40	5	5	5	;		9	Ŷ	Ŷ	ត្ .	1	1	4	*	m'	r (-	-	N -	~ ~	u M	m	m	4 4	r 4	ю	ŝ	•	0 r	• ►	~	80	60 ./	2		: د	¥ Ę	: የ	Ŷ
ŝ	7	•		I	: -	~	4	N F	n 4	0	-	N	a 1		•	•0	-	~		• •	•	o	•	e 0 ·	e 1	0 0	Ņ	7	5	10 -	• •	'n	N 1	<u>- 1</u>	n N	1	7	Ň	7 1	1	Ň	Ŧ	7	7		:	r -	• •	Ē
63	4	9	16	2 2	12	41	6 - 1	er 1 10 4	0 4 8 8	80	10	66	20	n G		ñ	2	8				5	55	20	9 10	2.00	8	88	ç I	- r 4 r	2 5	28	80	*		16	.	50	8 ¢		1 is #	4 E	31	10	56	5	Nő) M	02
	•	• •	7 (m c	, v , ,	- N	1 2				7 8	2	•	7 * 1	•		0	1	∧ (•	•	2		n I		י א פ			-	~ •	- 0	. 10	n N	• •	יי היי	. E	-	7 ' ~ '	- 4 - 4	, , ,		.∾. •	ß	•	• 80	ית פו	- • • •	ı rıc	-
Ō	Ö	4	2	n r	38	13	Ö,		r 60 ⊣	-	20	Ó.	1	Ŧ	=- 12	Ē	13	-		~ ~	• •0	20	14	÷ O	•	: ^		17	Ε. Π	9 F N	- 0	4	26	•	ຸດ	27	~	1	0.4	r v	• •0	22	4	4	in)		20	· 3	• ►
7	-	-	~ •		. n	*	**	0 4 	0 0 	~	~	~	80 ·	۰ ــــــــــــــــــــــــــــــــــــ	-	, ¥ +	۴	? '			• ••	Р Г			5 1 6 6		, 10 1		5 N		,	1	-1	11 N	? ?			2 2			• •	0	•	•	-		^	i in	• •
	ĩ	ĩ	1	ĭ ī	ï	ï	ī	ï	17	ï	ï	-	ſ	•		-																		•••	•		-			Ĩ		•••	-		•	•	Ĩ	ī	•
65	-39	1 2 1	166	001.	-1-	96	-189	6		04-	-39	-96	187	179	29-	90E	-158	2	2		217	-51	-228	126	0 1	ľ F	22			Ľ,	57	109	-169	-110	89-	0	-62	-105	-180		122	229	86-	-62	107	51	214	52	214
49	54	60	810		2.0	15	. 61	85		2	26	57	95	6.0		295	. 53	10 - 4	80 V	33	1	•	58.	9	0 1 10 4		25		2	23		86	. [9]		5	99	99		8 4 0 1		- m	518	30	58	83	10 j	0 10 0 10) e g	66
ŗ	•	ø			s ið	-	-		е п	. N	N N	Ņ	N -		- > 0	0	•	0			•••	-	•	ົ	1 0		• ••		Ĩ	× ç	- 0	-		Ļ į		ý	ò	ις φ			•	ŵ	ņ	μ,	Ņ	Ņ	N -	• -	-
• ~	'n	-	2	••	• •	•	۱ N	н г) -	е. Ю	•	•	• m	*	• ~ ~		n no	•	10	N -	• •	• m	2	7	7		, 0	, -		2	I -	- 0	•	-	~	• •	-	н 10	-	n 4	-	• •		N	• •	• •>	ю.	10	• 0.	1 10
	U	ŝ	m (•	1	ø	N.	• •	5 m		5		ļ	U 6	-	. 0.	v	n) (1 0	• ^		N	<u>-</u>	60 1	►•	- F) m	-		o •	<u>.</u>				ە ر	•		<u>-</u>	0. M) c	. 10	ø	0	o	-		Ļ	٦	. a
		=	=			Ň	-10			-1-	Ĩ			LL de I		-16	22			n r	-	-1	5		;:		1	7	~	•		~		1	- 3	•	-12	1		Ň	, but	29	7	2	-11		Ľ,	. ト	-11
-17	50	ŝ	50		124	4	62	62		121	•		-16		52	2	206	69	8	36	3	10	76	88	105		3	5	89	2.0	124	-		9 <u>1</u> 9		1	121	147			372	305	94	2	120	:	• •		92
i ر	¥	4	") [? î	i n	7	7	7 .	- ~	i Po	4		ı́د ل	×		'n	ņ	7	a 1		2	N 1	7	0	0 0	> ~	• •	N	m	•	r 10	•		د (4 F	-	Ŷ	•	•	1	'n	'n	•	•	~	•	_ ¥	: er 1) 40 1
	I	-	*	n n	u m	-	2	י חי	7 7	17	0			X (4	~~~	E)	-	* (» -	• •	6	•	7	∾ 4	• •	i N	7	7	Ŷī	77	0		2		~	2	0 1	n -	4 17	Ŷ	7	N	Ŷ	7		I	: 0	

.

																			-				
03	61	63	-4 8	88	120	1-10	57	39	4 -7	116 1	105	3 -4	36	-7	1 -4	257	241	-11	2	70	-106		
-2 🛦	77	70	-4 0	45	-61	3-10	120	-137	7 -7	87 .	-96	10 -4	65	-35	8 -4	56	+73	-0	2	91	-123		
-1 5	76				-150	4-10	774	- 34 3	3 -6		-74	3 - 7	101	122	0 - 4	147	169		5	74.0			
-1 -2	/5	-73	-5 10	121	-124	4-10	334	-342	2 -0	07 .	-70	2 - 3	101	122	yq	103	140		e	140	040		
-36	217 -	227	-1 10	107	-114	7-10	154	-146	4 -6	401 4	433	8 - 3	78	-98	8 -1	190	-181	2	2	1336-	1351		
-2 6	44	-73	-1 11	73	93	0 ~9	60	-68	9-6	85 -	-55	10 -3	50	6	9 -1	65	76	3	2	193	-245		
-6 7	137	168	-1 12	72	82	▲ -0	61	19	10 -6	50 -	-05	11 -3	48	30	-11 3	115	146	4	2	216	-201		
-7 .	07	103			-41	7 -0		-03	3 -5			6 - 2	443	387	-10 3	01	100	7	2	406	-6.00		
-/ 0	97	103	0 12	. 64	-01	79	0.3	-92	3 -5	00 -	115	4 - 2	442	507	-10 5	¥3	109	-	-	490	-509		
-4.9	- 41	- 25				2 -8	152	42	4 -5	128 -1	128	8 -2	52	53	~8 9	65	- 75	-9	3	89	-99		
-3 9	59	-89	L =	-5		7 -8	157	162	7 -5	208 2	211	9 -2	39	-13	-10 5	86	84	5	3	254	243		
-1 0	107	95	нк	FO	FC	8 -8	130	79	8 -5	64 -	-69	10 -2	50	-8	-9 5	135	-150	3	3	445	471		
			0-17		_		160		10 -6	07 -	133	2 -1			-7 6	273	274	-	÷.	164	-141		
-1 11	12	13	0-13	22	-5	1 -7	120	140	10 -5	91 -	133	2 -1	55		-/ 0	2.33	2.34		-	104	- 1 - 1		
0 11	. 88	-93	2-12	135	139	4 -7	39	-7	8 -4	172 8	203	11 -1	96 .	-105	-9 7	104	100	10	3	100	160		
			4-12	239	-248	7 -7	221	-257	9 -4	138 -1	146	-11 0	70 ·	-105	-8 7	250	265	11	3	68	69		
L =	-6		4-11	63	45	9 -7	80	-120	10 -4	61	92	-10 0	67	89	-8 8	56	-69	0	4	401	392		
		FC	0-10				253	277	1 -1	43		-11 1	86	124	-5 8	1.8.8	-187				-405		
			0-10	50	50	0 -0	LJL	277									-06	:		767	754		
2-15	124	112	1-10	92	82	9 -6	221	-230	8 -3		-83	-10 1	22	-36	-5 11	82	-70	۲	•	191	120		
3-12	67	-85	7 -9	242	-250	10 -6	80	51	10 -3	82	86	-10 2	71	-89	-3 12	42	29	3	4	184	189		
3-11	67	-54	2 -8	212	-205	10 -5	127	129	2 -2	152	151	-4 2	292	247				4	4	356	-243		
1-10	02	84	3	230	248	3 - 4	105	177	0 -2	67	61	-10 3	70	70				5	÷.	130	136	· .	
	72	- 40	J - J	239	140		1.57		·	40	-63	-0 -	314 -		. ~ .		EC			234	226	•	
5-10	09	-07	4 - 8	157	102	¥ -4	122	143	5 -1	00 .	-03	-y 3	214 .	-330	K	FU	PC.	Ö		234	664		
4-10	137	156	7 -8	142	149	2 - 3	96	-108	8 -1	149 1	156	-10 5	118 -	-113	-2-13	. 63	72	7		299	-285		
7-10	88	63	8 - 8	125	134	9 - 3	. 47	28	9 -1	64 1	108	-6 5	356 -	-382	4-12	75	-6	9		236	253		
3 -0	AA2	467	2 -7	6.2	-41	10 -3	110	-05	-8 1	60	48	-9 6	133	153	-6-10	0.0	113	10	٠	92	93		
	746	107					3.	-70	-10 3	73	-72	-1 4		8 1	-1-10	122	111	-10	- R	136	153		
	204 -	143	3 -0	00		4 - 2	30	-30	-10 3	13	- 12	-1 0			-1-10	122		- 10	-	100	1.55		
7 -9	69	80	8 -6	67	26	10 -1	67	•74	-9 4	267 2	285	-6 7	55 -	-106	7-10	49	28	1	5	203	617		
3 -8	75	93	10 -6	58	98	-10 1	84	-97	-7 4	122	141	-8 9	55	-56	1 -9	82	71	2	5	313	-296		
7 -8	85	69	0 -4		-49	-8 1	76	-78	-5 4	35 -	-47	-5 10	36	-29	2 - 9	39	19	3	5	601	-622		
	76	-70	2 . 1		116	-10 2	107	-67	-10 5	63		0 11	347 -	-107	0 -8	52	37		5	469	-478		
0 -0	75	-70	2 - 3		110	-10 2	107	-07	-10 5	0.5		0 11					- 5 1	-	ž	737	741		
1 -7	70	94	4 - 3	103	-159	-7 2	305	308	-/ 5	53.	58	0 12	88 .	-105	4 -0	132	-51	3	3	131	701		N
3 - 7	166 -	161	4 -2	43	-72	-10 3	50	-15	-8 7	183 ~:	189	-1 13	57.	71	-1 -7	47	-37	7	5	161	~149		1
9 - 7	83 -	113	10 -2	173	-186	-8 3	49	-62	-1 8	57	97	0 13	69	83	4 -7	60	61	8	5	58	76		·+
3 -6	158 -	160	11 -2	164	150	-6 3	375	300	-3 11	01 -	140				9 -7	66	62	•	5	115	111		
J - U	100 -		11 -2	. 100	109	-0 5			-1 12	74			- •			163	-168	-10	Ā	0.1	-105		
4 -0	88	-53	2 -1	20	2	-9 5	02	-48	-1 12	/0	20				-0-5	102	-100	-10			-105		
8 ≁6	.112	+25	5 -1	271	-311	-6 5	36	-21				нк	FO	۴C	-0 -3	85	73	0	•	8 <i>6</i> ₽	238		
										-			114	117		A7	30	•		304	-317		
2 -5	51	14	8 -1	65	-88	-97	100	120	L =	-2		3-13							0	204			
2 - 5	51 418 -	14 425	8 -1 9 -1	65	-88 -156	-97 -69	100	-143	L =	-2 F0	FC	1-12	138	-138 -	-10 -2	295	236	2	6	611	-643		
2 -5	51 418 -	14 425 -85	8 -1 9 -1	- 65 92	-88	-9 7 -6 9	100	-143	L = H K 1-13	-2 F0 135	FC	1-12	138	-138 -	-10 -2	295	236	2	6	611	-643		
2 -5 3 -4 10 -4	51 418 - 102	14 425 -85	8 -1 9 -1 -9 1	65 92 156	-88 -156 -152	-9 7 -6 9 -3 9	100 130 65	-143	L = H K 1-13	-2 F0 135	FC 138	1-12 3-12	138 -	-138 -	-10 -2	295	236	2	0 6 6	611 221	-643 211 356		
2 -5 3 -4 10 -4 4 -3	51 418 - 102 243	14 425 -85 209	8 -1 9 -1 -9 1 -7 1	65 92 156 37	-88 -156 -152 41	-9 7 -6 9 -3 9 -2 12	100 130 65 47	-143 -84 -38	L = H K 1-13 3-13	-2 F0 135 91	FC 138 -86	3-13 1-12 3-12 4-12	138 72 58	-138 -85 -80	-10 -2 -6 -2 5 -2	295 260 106	236 269 94	234	0000	611 221 371	-643 211 356		
2 -5 3 -4 10 -4 4 -3 10 -3	51 418 - 102 243 86	14 425 -85 209 143	8 -1 9 -1 -9 1 -7 1 -10 2	65 92 156 37 57	-88 -156 -152 41 17	-9 7 -6 9 -3 9 -2 12 -1 12	100 130 65 47 80	-143 -84 -38 72	L = H K 1-13 3-13 1-12	-2 F0 135 91 87 -1	FC 138 -86 101	3-13 1-12 3-12 4-12 1-11	138 72 58 111	-138 -85 -80 101	-10 -2 -6 -2 5 -2 8 -2	295 260 106 76	236 269 94 61	2 3 4 5	0 6 6 6	611 221 371 37	-643 211 356 -57		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2	51 418 - 102 243 86 149	14 425 -85 209 143 195	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2	65 92 156 37 57 186	-88 -156 -152 41 17 209	-9 7 -6 9 -3 9 -2 12 -1 12 0 12	100 130 65 47 80 86	-143 -84 -38 72 61	L = H K 1-13 3-13 1-12 3-12	-2 F0 135 91 87 -1 92	FC 138 -86 101 90	3-13 1-12 3-12 4-12 1-11 2-11	138 72 58 111 88	-138 -85 -80 101 68	-10 -2 -6 -2 5 -2 8 -2 -11 0	295 260 106 76 295	236 269 94 61 299	2 3 4 5 6	0 6 6 6 6	611 221 371 37 504	-643 211 356 -57 -490		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2	51 418 ~ 102 243 86 149 54	14 425 -85 209 143 195 42	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2	65 92 156 37 57 186 39	-88 -156 -152 41 17 209 -25	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13	100 130 65 47 80 86 148	-143 -84 -38 72 61 -152	L = H K 1-13 3-13 1-12 3-12 4-12	-2 F0 135 91 87 -1 92 76	FC 138 -86 101 90 26	3-13 1-12 3-12 4-12 1-11 2-11 3-10	138 72 58 111 88 61	-138 - -85 -80 101 68 64	-10 -2 -6 -2 5 -2 8 -2 -11 0 -10 0	295 260 106 76 295 99	236 269 94 61 299 -100	2 3 4 5 6 7	0 0 0 0 0 0	611 221 371 37 504 453	-643 211 356 -57 -490 442		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2	51 418 - 102 243 66 149 54	14 425 -85 209 143 195 42 05	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2	65 92 156 37 57 186 39	-88 -156 -152 41 17 209 -25	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13	100 130 65 47 80 86 148	-143 -84 -38 72 61 -152	L = H K 1-13 3-13 1-12 3-12 4-12	-2 F0 135 91 87 -1 92 76	FC 138 -86 101 90 26	3-13 1-12 3-12 4-12 1-11 2-11 3-10	138 72 58 111 88 61	-138 -85 -80 101 68 64 -129	-10 -2 -6 -2 5 -2 8 -2 -11 0 -10 0	295 260 106 76 295 99	236 269 94 61 299 -100 388	1 2 3 4 5 6 7 8	0000000	611 221 371 37 504 453 92	-643 211 356 -57 -490 442 -107		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2 9 -2	51 418 - 102 243 86 149 54 117	14 425 -85 209 143 195 42 95	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3	65 92 156 37 57 186 39 159	-88 -156 -152 41 17 209 -25 -202	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13	100 130 65 47 80 86 148 64	-143 -84 -38 72 61 -152 50	L = H K 1-13 3-13 1-12 3-12 4-12 1-11	-2 F0 135 91 87 -1 92 76 196	FC 138 -86 101 90 26 177	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10	138 72 58 111 88 61 118	-138 -85 -80 101 68 64 -129	-10 -2 -6 -2 5 -2 8 -2 -11 0 -10 0 -10 0	295 260 106 76 295 99 548	236 269 94 61 299 -100 388	23456780	0 6 6 6 6 6 6 6 6 6	611 221 371 37 504 453 92	-643 211 356 -57 -490 442 -107		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2 9 -2 4 -1	51 418 - 102 243 86 149 54 117 63	14 425 -85 209 143 195 42 95 -85	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3 -7 4	65 92 156 37 57 186 39 159 38	-88 -156 -152 41 17 209 -25 -202 -35	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13	100 130 65 47 80 86 148 64	-143 -84 -38 72 61 -152 50	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10	-2 F0 135 91 87 -1 92 76 196 106	FC 138 -86 101 90 26 177 94	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10	138 72 58 111 58 61 118 71	-138 -85 -80 101 68 64 -129 -65	-10 -2 -6 -2 5 -2 8 -2 -11 0 -10 0 -4 0 1 0	295 260 106 76 295 99 548 1137	236 269 94 61 299 -100 388 1244	1 2 3 4 5 6 7 8 9	0 6 6 6 6 6 6 6	611 221 371 37 504 453 92 .78	-643 211 356 -57 -490 442 -107 -86		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2 9 -2 4 -1 8 -1	51 418 - 102 243 86 149 54 117 63 84	14 425 -85 209 143 195 42 95 -85 -79	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -9 2 -5 3 -7 4 -9 5	65 92 156 37 57 186 39 159 38 98	-88 -156 -152 41 17 209 -25 -202 -35 122	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L =	100 130 65 47 80 86 148 64 -3	-143 -84 -38 72 61 -152 50	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10	-2 F0 135 91 87 92 76 196 106 232	FC 138 -86 101 90 26 177 94 242	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 -9	138 72 58 111 58 61 118 71 42	-138 -85 -80 101 68 64 -129 -65 -12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	295 260 106 76 295 99 548 1137- 2044	236 269 94 61 299 -100 388 1244 1990	1234567892	0 6 6 6 6 6 6 6 6 7	611 221 371 37 504 453 92 .78 507	-643 211 356 -57 -490 442 -107 -86 552		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2 9 -2 9 -2 4 -1 8 -1 9 -1	51 418 - 102 243 86 149 54 117 63 84 87 -	14 425 -85 209 143 195 42 95 -85 -79 102	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3 -7 4 -9 5 -7 5	65 92 156 37 57 186 39 159 38 98 41	-88 -156 -152 41 17 209 -25 -202 -35 122 -52	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13	100 130 65 47 80 86 148 64 -3 F0	-143 -84 -38 72 61 -152 50	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9	-2 F0 135 91 87 -1 92 76 196 196 106 232 20	FC 138 -86 101 90 26 177 94 242 -70	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 ~9 4 -9	138 72 58 111 58 61 118 71 42 153	-138 -85 -80 101 68 64 -129 -65 -12 179	-10 -2 -6 -2 5 -2 8 -2 -11 0 -10 0 -10 0 -1 0 2 0 3 0	295 260 106 76 295 99 548 1137- 2044- 726	236 269 94 61 299 -100 388 1244 1990 -619	12345678923	06666677	611 221 371 37 504 453 92 .78 507 444	-643 211 356 -57 -490 442 -107 -86 552 -404		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 9 -2 4 -1 8 -1 9 -1 5 0	51 418 - 102 243 86 149 54 117 63 84 87 - 225 -	14 425 -85 209 143 195 42 95 -85 -79 102 262	8 -1 9 -1 -9 1 -7 1 -7 2 -9 2 -8 2 -5 3 -7 4 -9 5 -7 5 -7 5	65 92 156 37 57 186 39 159 38 98 41	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13	100 130 65 47 80 86 148 64 -3 F0 62	-143 -84 -38 72 61 -152 50 FC -47	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9 4 -9	-2 F0 135 91 87 92 76 196 196 232 232 55	FC 138 -86 101 90 26 177 94 242 -70 55	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 ~9 4 -9 8 ~9	138 72 58 111 88 61 118 71 42 153 70	-138 -85 -80 101 68 64 -129 -65 -12 179 53	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 6 & -2 \\ -11 & 0 \\ -10 & 0 \\ -4 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 492	236 269 94 61 299 -100 388 1244 1990 -619 -470	123456789235	0666666777	611 221 371 37 504 453 92 .78 507 444 423	-643 211 356 -57 -490 442 -107 -86 552 -404 -429		
2 -5 3 -4 10 -3 10 -3 3 -2 5 -2 9 -2 9 -2 9 -1 5 -1 9 -1 5 0	51 418 - 102 243 86 149 54 117 63 84 87 - 225 -	14 425 -85 209 143 195 42 95 -85 -79 102 262	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3 -7 4 -9 5 -7 5 -7 6	65 92 156 37 57 186 39 159 38 98 41 41	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 57	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13	100 130 65 47 80 86 148 64 50 64	-143 -84 -38 72 61 -152 50 FC -47	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9 4 -9 4 -9	-2 F0 135 91 -87 -92 76 196 106 232 200 55	FC 138 -86 101 90 26 177 94 242 -70 55	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 ~9 4 -9 8 ~9	138 72 58 111 88 61 118 61 118 71 42 153 70 70	-138 -85 -80 101 68 64 -129 -65 -12 179 53	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 492	236 269 94 61 299 -100 388 1244 1990 -619 -470 506	1234567892356	06666667777	611 221 371 37 504 453 92 .78 507 444 423 530	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 9 -2 4 -1 8 -1 9 -2 11 0	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 -	14 425 -85 209 143 195 42 95 -85 -79 102 262 187	8 -1 9 -1 -9 1 -7 1 -7 2 -9 2 -8 2 -5 3 -7 4 -9 5 -7 5 -7 6 -6 6	65 92 156 37 57 186 39 159 38 98 41 41 43	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 37	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12	100 130 65 47 80 86 148 64 55 55	-143 -84 -38 72 61 -152 50 FC -47 28	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 4-10 4-10 2 -9 4 -9 7 -9	-2 F0 135 91 -87 -92 76 196 106 232 232 55 209	FC 138 -86 101 90 26 177 94 242 -70 55 196	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 ~9 4 ~9 8 ~9 1 ~8	138 72 58 111 88 61 118 71 42 153 70 74	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 6 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 492 497	236 269 94 61 299 -100 388 1244 1990 -619 -470 506	234567892356	06666667777	611 221 371 37 504 453 92 .78 507 444 423 539	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513	- - - -	
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 5 -2 9 -2 4 -1 8 -1 9 -1 5 0 11 0 -9 1	51 418 - 102 243 66 149 54 117 63 84 87 - 225 - 192 - 71 -	14 425 -85 209 143 195 42 95 -79 262 187 127	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3 -7 5 -7 5 -7 5 -7 6 -8 7	65 92 156 37 57 186 39 159 38 98 41 41 43 167	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 37 181	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12	100 130 65 47 80 86 148 64 54 FD 62 55 50	-143 -84 -38 72 61 -152 50 FC -47 28 -40	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9 4 -9 7 -9 7 -8	-2 F0 135 91 87 -1 92 76 196 106 232 55 209 78	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 ~9 4 ~9 8 ~9 1 ~8 3 ~8	138 72 58 111 88 61 118 71 42 153 70 74 95	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 & 0 \end{array}$	295 260 106 76 295 99 548 1137 2044 726 492 497 211	236 269 94 61 299 -100 388 1244 1990 -619 -470 506 -185	2 3 4 5 6 7 8 9 2 3 5 6 9 -9	066666677778	611 221 371 504 453 92 .78 507 444 423 539 157	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 5 & -2 \\ 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 \\ 1 \\ -2 & 1 \end{array}$	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 - 71 - 43	14 425 209 143 195 955 9262 702 2627 127 3	8 -1 9 -1 -9 1 -7 1 -10 2 -8 2 -5 3 -7 5 -7 5 -7 6 -6 6 -8 8	65 92 156 37 57 186 39 159 38 98 41 41 43 167 80	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 37 181 -70	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12	100 130 65 47 80 86 148 64 55 50 148	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 2-9 4-9 7-9 7-8 8-8	-2 F0 135 91 87 -1 92 76 196 106 232 209 78 55 209 78 56	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83 -49	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 0 ~9 4 ~9 8 ~9 1 ~8 3 ~8 4 ~8	138 72 58 111 88 61 118 61 118 71 42 153 70 74 95 452	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ -10 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 \\ 0 \\ 9 \\ 0 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 492 497 211 147	236 269 94 61 299 -100 388 1244 1990 -619 -470 506 -185 -171	2 3 4 5 6 7 8 9 2 3 5 6 -9 1	0666666777788	611 221 371 504 453 92 .78 507 444 423 539 157 302	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328		
2 -5 3 -4 10 -3 10 -3 3 -2 9 -2 4 -1 8 -1 9 -1 5 0 11 0 -9 1 -2 2	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 - 71 - 43 47	14 425 -85 209 143 195 42 95 -85 -79 102 262 187 127 -33 -4	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 4 -9 5 -7 5 -7 5 -7 6 -8 7 0 8 9	65 92 156 37 57 186 39 159 38 98 41 41 43 167 46	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 37 181 -70 26	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-11	100 130 65 47 80 86 148 64 50 62 55 50 148 163	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 4-10 2 -9 7 -8 8 -8 9 -8	-2 F0 135 91 87 -2 92 76 196 106 232 232 55 209 78 56 49	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83 -49 -15	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 $0 \sim 9$ 4-9 $8 \sim 9$ $1 \sim 8$ $3 \sim 8$ $4 \sim 8$ $7 \sim 8$	138 72 58 111 88 61 118 61 118 71 42 153 70 74 95 452 158	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ -11 & 1 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 497 211 147 79	236 269 94 61 299 -100 388 1244 1990 -619 -470 506 -185 -171 -101	2 3 4 5 6 7 8 9 2 3 5 6 9 2 3 5 6 9 2 3 5 6 9 2 3 5 6 9 2 3 5 6 7 8 9 2 3 5 6 7 8 9 2 3 5 6 7 8 9 2 5 6 9 2 5 6 9 2 5 6 9 2 5 6 9 2 5 6 9 7 9 2 5 6 9 7 9 9 2 5 6 9 9 2 5 6 9 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	06666667777888	611 221 371 37 504 453 92 .78 507 444 423 539 157 302 387	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ 1 & -2 \\ -2 & 1 \\ -9 & 2 \\ -1 \\ 2 & -1 \\ -2 & 2 \\ -1 \\ -2 & 2 \\ -1 \\ -2 & 2 \\ -1 \\ -2 & 2 \\ -1 \\ -2 & 2$	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 - 71 - 43 47	14 425 209 145 209 195 203 195 205 205 205 205 205 205 205 205 205 20	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -7 2 -7 5 -7 5 -7 6 -8 7 -8 8 -8 9 -8 9 -8 9 -8 9 -8 9 -8 9 -7 1 -9 1 -9 1 -9 1 -9 1 -9 1 -9 1 -9 1 -9	65 92 156 37 57 186 39 159 38 98 41 41 43 167 80 47	-88 -156 -152 41 17 209 -25 -202 -35 122 -55 56 37 181 -70 26	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11	100 130 65 47 80 148 64 50 62 55 50 148 163	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 20	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9 7 -9 7 -9 7 -9 7 -9 7 -8 8 -8 9 -8 9 -8	-2 F0 135 91 87 -1 92 76 196 196 232 55 209 78 55 209 78 56 49 45	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83 -49 -15 -63	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 $0 \sim 9$ $4 \sim 9$ $8 \sim 9$ $1 \sim 8$ $3 \sim 8$ $4 \sim 8$ $7 \sim 8$ $4 \sim 7$	138 72 58 111 88 61 118 61 118 71 42 153 70 74 95 452 158 42	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165 26	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 6 & -2 \\ -11 & 0 \\ -10 & 0 \\ -10 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ -11 & 1 \\ 1 \end{array}$	295 260 106 76 295 99 548 1137- 2044- 726 492 497 211 147 7958	236 269 94 61 299 -100 383 -1244 -1990 -619 -619 -619 -619 -185 -171 -101 -961	2 3 4 5 6 7 8 9 2 3 5 6 -9 1 2 3	066666677778888	611 221 371 504 453 92 .78 507 444 423 539 157 302 387 138	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154		
2 -5 3 -4 10 -4 4 -3 10 -3 3 -2 9 -2 4 -1 8 -1 9 -1 5 0 11 0 -9 1 -9 2 -1 -9 2 -1 -1 -1 -1 -1 -1 -1 -1	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 - 43 47 47	14 425 209 145 209 145 209 145 209 145 209 145 205 205 205 205 205 205 205 205 205 20		65 92 156 37 57 186 39 159 38 41 43 167 80 46 47	-88 -156 -152 17 209 -25 -202 -35 122 -52 56 56 37 181 -70 26 73	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11 4-10	100 130 65 47 80 86 148 64 55 50 148 163 86	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 4-10 2-9 4 -9 7 -9 7 -9 8 8 -8 9 -8 1 -7	-2 F0 135 91 76 196 196 196 232 55 209 78 56 49 45 50 78	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83 -49 -15 -63	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 0 -9 8 -9 1 -8 3 -8 4 -7 8 -7	138 72 58 111 86 61 118 61 118 71 42 153 70 74 95 452 158 452	-138 -85 -80 101 68 64 -129 -65 -129 -129 53 126 111 430 165 25	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ -10 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 \\ 0 \\ -11 & 1 \\ 1 \\ 1 \\ 1 \end{array}$	295 260 106 76 295 99 548 1137- 2046 492 497 211 147 79 958	236 269 94 61 299 -100 388 1244 1990 -619 -470 506 -185 -171 -101 -901 -107	1 2 3 4 5 6 7 8 9 2 3 5 6 9 1 2 3 4	0666666777788888	5011 501 371 377 504 453 92 .78 507 443 539 157 302 387 138 70	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154 107		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ -3 \\ 10 & -3 \\ 3 & -3 \\ 5 & -2 \\ 9 & -2 \\ 4 & -1 \\ 9 & -1 \\ 5 & 0 \\ -9 & 1 \\$	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 711 - 43 47 105	14 425 -85 209 143 95 -79 102 2627 -334 104		65 92 156 37 56 39 159 38 98 41 41 43 167 80 46 47 61	-88 -156 -152 41 17 209 -25 -35 -202 -35 122 -52 56 37 181 -70 26 73 39	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11 4-10 7-10	100 130 65 47 80 86 148 64 -3 F0 62 55 50 148 163 86 92	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 4-10 2 -9 7 -9 7 -8 8 -8 9 -8 1 -7 4 -7	-2 F0 135 91 87 76 196 232 40 55 209 78 55 209 78 56 49 45 203	FC 138 -86 101 90 26 177 94 242 -70 55 196 -83 -49 -15 -63 198	3 - 13 1 - 12 3 - 12 4 - 12 1 - 11 2 - 11 3 - 10 4 - 10 7 - 10 0 - 9 4 - 9 8 - 9 8 - 9 1 - 8 3 - 8 4 - 8 4 - 7 8 - 7	138 72 58 111 88 61 118 71 42 153 70 74 95 158 452 158 42 121	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165 26 -135	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 3 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ -11 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 \\ 2 & 1 \end{array}$	295 260 106 76 295 95 48 1137- 2044- 726 492 497 211 147 79 958 110	236 269 94 61 2990 -100 388 -1244 -1990 -619 -470 506 -185 -171 -101 -961 -107	2 3 4 5 6 7 8 9 2 3 5 6 9 1 2 3 6 1	0666667777888888	5011 221 371 377 504 453 92 .78 507 444 423 5399 157 302 387 138 707	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 -423 154 154		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 5 & -2 \\ 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 & 1 \\ -2 & 1 \\ -9 & 2 \\ -10 & 2 \\ -10 & 3 \\ -6 & 3 \end{array}$	51 418 - 102 243 86 149 54 117 63 87 - 225 - 192 - 71 - 43 47 47 105 94	14 425 209 145 209 1952 -792 1062 1273 -874 104	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65 92 156 37 186 39 159 38 98 41 43 167 80 46 47 61	-88 -156 -152 41 17 209 -202 -35 122 -52 56 37 181 -70 26 73 39	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-11 4-10 7-10 3 -9	100 130 65 47 80 86 148 64 F0 62 55 50 148 163 86 92 408	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 2-9 7-8 8-8 9-8 1-7 8-7 8-7	-2 F0 135 91 -87 -92 76 196 196 232 55 209 78 55 209 78 56 49 -45 203 95	FC 138 -86 101 90 26 177 942 -70 55 196 -83 -49 55 198 -63 198	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 $0 \sim 9$ $4 \sim 9$ $8 \sim 9$ $1 \sim 8$ $3 \sim 8$ $4 \sim 8$ $7 \sim 8$ $4 \sim 7$ $8 \sim 7$ $4 \sim 6$	138 72 58 111 86 61 118 61 118 71 42 153 70 74 95 452 158 42 121 71	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165 26 -135 -76	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 6 & -2 \\ -3 & -2 \\ -11 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -11 & 1 \\ 1 & 1 \\ -1 \\ -1 \\ -1 \\ -1 \\$	295 260 106 76 299 548 1137- 2044- 726 497 211 147 799 518 110 407	236 269 94 61 299 -100 388 -1244 -1990 -61990 -470 506 -185 -171 -101 -107 435	1 2 3 4 5 6 7 8 9 2 3 5 6 9 1 2 3 6 8	0 6 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	611 221 371 37 504 453 92 .78 507 444 423 539 157 302 387 138 70 63	-643 211 356 -57 -490 442 -107 -86 552 -404 -423 -146 328 -423 154 107 75		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -3 \\ 3 & -2 \\ 5 & -2 \\ 4 & -1 \\ 8 & -1 \\ 9 & -2 \\ 4 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 & 1 \\ -9 & 2 \\ -10 & 3 \\ -6 & 3 \\ -3 & 4 \\ \end{array}$	$\begin{array}{c} 51 \\ 418 \\ - \\ 102 \\ 243 \\ 86 \\ 149 \\ 54 \\ 117 \\ 63 \\ 84 \\ - \\ 225 \\ - \\ 192 \\ - \\ 71 \\ - \\ 43 \\ 47 \\ 47 \\ 105 \\ 94 \\ - \\ 87 \\ - \\ 98 \\ - \end{array}$	14 425 209 1435 955 -792 2187734 1049 1149	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -8 2 -5 3 -7 4 -9 5 -7 6 -6 6 -8 7 0 8 -6 9 -4 10 -1 12	65 92 156 37 186 39 159 38 98 41 43 167 80 46 47 61	-88 -156 41 17 209 -25 -35 122 -52 56 37 181 -70 26 73 39	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11 4-10 7-10 3 -9 7 -9 7 -9	100 130 65 47 80 86 148 64 55 55 148 163 86 92 408 73	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410 -55	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 4-10 4-10 4-10 2 -9 7 -8 8 -8 9 -8 1 -7 4 -7 8 -7 9 -6	-2 F0 135 91 87 76 196 106 232 55 209 78 55 209 78 55 209 78 56 209 78 50 309 309	FC 138 -86 101 90 26 177 94 2-70 55 196 -83 -49 -15 3 198 -93 293	$\begin{array}{c} 3-13\\ 1-12\\ 3-12\\ 4-12\\ 1-11\\ 2-11\\ 3-10\\ 4-10\\ 7-10\\ 0& -9\\ 8& -9\\ 1& -8\\ 3& -8\\ 3& -8\\ 4& -7\\ 8& -7\\ 8& -7\\ 8& -7\\ 8& -6\\ 9& -6\end{array}$	138 72 58 111 88 61 118 61 118 71 42 153 70 74 452 158 452 158 42 121 71 91	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165 26 -135 -76 115	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 & 0 \\ -11 & 1 \\ 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \end{array}$	295 260 106 295 99 548 1137- 2046 492 497 211 147 79 958 110 407 854	236 269 94 61 2990 -100 388 1244 1990 -619 -619 506 -185 -171 -101 -961 -101 -961 -435 -832	1 2 3 4 5 6 7 8 9 2 3 5 6 9 1 2 3 6 8 3 5 6 8 3	c 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 9	5611 221 371 504 505 507 444 4239 557 302 387 138 702 387 138 703 276	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154 107 75 281		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ -3 \\ 10 & -3 \\ 3 & -2 \\ -5 \\ -2 \\ -7 \\ -9 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	51 418 - 102 243 86 149 54 117 63 84 87 - 225 - 192 - 71 - 43 47 105 94 98 - 146	14 425 2093 1452 2093 1452 -792 1022 1273 102 1273 11499 102	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 5 -7 5 -7 5 -7 5 -7 6 -8 7 0 8 -6 9 -4 10 -1 12 L = H K	65 92 156 37 57 186 39 159 38 95 41 41 43 167 80 40 47 61	-88 -156 41 17 209 -202 -35 122 -52 52 37 181 -70 26 39 FC	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-12 4-11 4-10 3 -9 7 -9 8 -9	100 130 65 47 80 86 148 64 FO 62 55 50 148 163 86 92 408 75	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410 -554	L = H K 1-13 3-13 1-12 3-12 4-12 1-11 3-10 4-10 2 -9 7 -9 7 -9 7 -9 8 -8 9 -8 9 -8 1 -7 8 -7 9 -6 9 -6	-2 F0 135 91 -7 76 196 232 209 78 55 209 78 56 49 55 209 78 56 203 95 309 78 107	FC 138 -86 101 90 267 942 -75 196 -49 -15 198 3-93 55	3-13 1-12 3-12 4-12 1-11 3-10 4-10 7-10 0 -9 4 -9 8 -9 8 -9 1 -8 3 -8 4 -8 7 -8 4 -7 8 -7 8 -7 4 -6 9 -5	138 72 58 111 86 61 118 71 42 153 70 74 95 158 42 121 71 91 102	-138 -85 -80 101 68 64 -129 -65 -129 -65 -129 53 126 111 430 165 -26 -135 -76 115	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 9 & 0 \\ -11 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	295 260 106 765 99 548 1137- 2044- 724- 724- 724- 79 211 147 79 958 110 407 854 373	236 269 94 61 299 -100 388 -1244 -1990 -619 -470 506 -185 -171 -961 -107 435 -832 409	123456789235691236834	06666666777788888899	3611 221 371 37 507 507 423 539 157 3087 138 70 636 236	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154 107 751 -232		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 5 & -2 \\ 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 & 1 \\ -9 & 2 \\ -10 & 3 \\ -3 & 4 \\ -9 \\ -1 \\ 2 \\ -10 \\ 3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$	51 418 - 102 243 86 149 54 117 63 84 - 225 - 192 - 71 - 43 47 47 105 94 98 - 146 149 149 149 149 149 149 149 149	14 425 -85 209 143 295 -79 262 79 262 79 102 262 71 27 34 70 1149 97 77	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 4 -9 5 -7 6 -6 6 -8 9 -4 10 -1 12 L = H K2	65 92 156 37 57 186 39 159 98 41 43 167 80 46 47 61 -4	-88 -156 41 17 209 -25 -202 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 122 -35 56 37 181 -70 -20 -20 -25 -25 -25 -20 -25 -25 -20 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11 4-10 7-10 3-9 7 -9 8 -9 1 -9	100 130 65 47 80 86 148 64 55 50 148 163 86 148 163 86 73 75	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410 -55 -64	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 2-9 4 -9 7 -8 8 -8 1 -7 8 -8 1 -7 8 -7 9 -6 10 -6	-2 F0 135 91 -87 -92 76 196 106 232 55 209 78 56 49 -55 209 78 56 49 -55 209 78 56 49 -55 209 78 56 49 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	FC 138 -86 101 926 177 942 -705 196 -83 -49 -15 -198 -93 55 -198 -293 54	3-13 1-12 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 -9 8 -9 1 -8 4 -7 8 -8 7 -8 4 -7 8 -7	138 72 58 111 88 61 118 61 118 71 42 153 70 74 95 452 158 452 158 452 121 71 91 102	-138 -85 -80 101 64 -129 -65 -12 179 53 126 111 430 165 -135 -76 115 111 53 53	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ -10 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 8 & 0 \\ -11 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 5 & 1 \\ 6 & 1 \\ 7 & 1 \end{array}$	295 260 106 295 99 548 1137- 2044- 726 492 497 211 147 79 958 110 407 854 373 654	236 269 94 61 299 -100 3888 1244 1990 -619 -619 -470 506 -185 -171 -101 -961 -101 -967 435 -832 409 77	1234567892356912368346	066666667777888888999	3611 221 371 37 504 92 .78 507 4423 539 157 302 387 138 63 276 104	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154 107 75 281 -232 -97		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ -3 \\ 10 & -3 \\ 5 & -2 \\ 5 & -2 \\ 5 & -2 \\ 5 & -2 \\ 4 & -1 \\ 8 & -1 \\ 9 & -1 \\ 8 & -1 \\ 9 & -1 \\ 1 & 9 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 1 \\ -9 & 5 \\ -1 & 3 \\ -3 & 4 \\ -9 & 5 \\ -7 & 6 \end{array}$	$\begin{array}{c} 51 \\ 418 \\ - \\ 102 \\ 243 \\ 86 \\ 149 \\ 54 \\ 117 \\ 63 \\ 84 \\ - \\ 225 \\ - \\ 192 \\ - \\ 71 \\ - \\ 47 \\ 47 \\ 105 \\ 98 \\ - \\ 146 \\ 36 \\ - \\ - \end{array}$	14 425 -85 209 143 195 42 95 -79 102 262 187 -33 -47 104 1149 1799 -17	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 4 -9 5 -7 4 -9 5 -7 6 -6 6 -8 7 0 8 -6 9 -4 10 -1 12 L = H K 3-12	65 92 156 37 57 186 39 159 38 41 41 43 167 80 46 47 61 50 66	-88 -156 -152 41 17 209 -205 -202 -35 122 -56 37 181 -70 26 73 39 FC 68	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-12 4-11 4-10 7-10 3 -9 7 -9 8 -9 1 -8	100 130 65 47 80 86 148 64 -3 FD 62 55 50 148 163 86 92 408 75 53	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410 -55 -64 -58	L = H K 3-13 1-12 3-12 4-12 1-11 3-10 4-10 4-10 2 -9 7 -8 8 -8 1 -7 8 -7 8 -7 8 -7 8 -6 10 -6 4 -5	-2 F0 135 91 76 196 106 232 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 55 209 78 76 196 196 202 202 76 202 202 76 202 202 202 202 202 202 202 202 202 20	FC 138 -86 101 90 277 942 -55 196 -49 -15 198 255 63	$\begin{array}{c} 3-13\\ 3-12\\ 4-12\\ 1-11\\ 2-11\\ 3-10\\ 4-10\\ 7-10\\ 0& 9\\ 4& -9\\ 8& -9\\ 8& -9\\ 8& -9\\ 8& -8\\ 3& -8\\ 4& -8\\ 4& -8\\ 4& -7\\ 8& -7\\ 8& -7\\ 4& -6\\ 9& -5\\ 7& -5\\ 7& -5\\ -5& -5\\ $	138 72 58 111 88 61 118 71 42 153 70 74 95 452 158 42 121 71 91 102 183	-138 -85 -80 101 68 64 -129 -65 -129 -65 179 53 126 111 430 165 26 -135 -135 -135 111 -205	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 3 & 0 \\ 5 & 0 \\ 3 & 0 \\ 7 & 0 \\ 8 & 0 \\ 9 & 0 \\ -11 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	295 260 106 295 99 548 1137- 2044- 726 497 211 147 958 110 407 858 110 407 858	236 269 94 61 299 -100 388 1244 1990 -619 -470 506 -185 -171 -101 -961 -105 -832 409 777	12345678923569123683467	0666666677778888889999	3611 221 371 374 92 787 453 5044 539 1572 387 138 703 2367 138 703 2766 102	-643 211 356 -57 -490 442 -107 -86 552 -404 513 -146 328 -429 513 -146 328 154 107 75 281 -232 -97 221		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 10 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 5 & -2 \\ 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 & 1 \\ -2 & 1 \\ -9 & 2 \\ -10 & 3 \\ -3 & 4 \\ -9 & 5 \\ -7 & 6 \\ -8 & 7 \\ -8 & 7 \\ \end{array}$	$\begin{array}{r} 51\\ 418\\ -\\ 102\\ 243\\ 86\\ 149\\ 54\\ 117\\ 63\\ 87\\ -\\ 225\\ -\\ 192\\ -\\ 71\\ -$	14 425 -85 2143 195 42 955 -879 102 2627 127 -33 -87 104 1149 1277 -79	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 4 -9 5 -7 6 -6 6 -6 7 0 8 -6 9 -4 10 -1 12 L = H K 3-12 0-11	65 92 156 37 57 186 39 189 38 98 41 43 167 80 45 41 43 167 61 56 47	-88 -156 -152 41 17 209 -25 -202 -35 122 -52 56 37 181 -70 26 73 39 FC 68 -13	$\begin{array}{c} -9 & 7 \\ -6 & 9 \\ -3 & 9 \\ -2 & 12 \\ -1 & 12 \\ 0 & 12 \\ -1 & 13 \\ 0 & 13 \\ \\ L & = \\ H & K \\ 2-13 \\ 1-12 \\ 3-12 \\ 3-12 \\ 4-11 \\ 4-10 \\ 7-10 \\ 7-10 \\ 7-9 \\ 8 & -9 \\ 8 & -9 \\ 1 & -8 \\ 3 & -8 \end{array}$	100 130 65 47 80 86 148 64 55 50 148 163 92 408 73 753 94	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 -51 142 -117 410 -55 -68 -72	L = H K 1-13 3-13 1-12 3-12 1-11 3-10 2-9 7-9 7-8 8-8 9-8 1-7 8-7 9-6 10-6 4-5 8-5	-2 F0 135 91 -37 92 76 196 232 209 55 209 55 209 78 56 49 45 203 95 309 203 95 309 107 80 81	FC 138 -86 101 926 177 942 -75 196 -83 -49 -63 198 -93 563 -94	3-13 3-12 4-12 1-11 2-11 3-10 4-10 7-10 0 9 4 -9 8 9 4 -9 8 9 4 -9 8 -9 -9 8 -9	138 72 58 111 88 61 118 71 95 452 153 70 74 95 452 153 70 74 95 452 153 70 74 95 452 153 70 74 95 452 153 70 95 452 153 163 51	-138 -85 -80 101 68 64 -129 -65 -12 179 53 126 111 430 165 -76 115 -76 115 -76 115 -76 115 -76	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 6 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ -10 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 3 & 0 \\ -11 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	295 260 106 295 99 548 1137- 726 492 497 211 147 79 958 110 407 854 373 69 271	236 269 94 1299 -100 388 1244 12990 -619 -470 5-185 -171 -105 -105 -185 -171 -107 435 -832 409 77 -270	12345678923569123683467	0666666777788888899990	3611 221 371 374 453 92 787 444 423 5377 302 387 302 387 2367 1387 2766 204 321	-643 211 356 -57 -490 442 -107 -86 552 -404 -429 513 -146 328 -423 154 107 75 281 -232 -97 321		
$\begin{array}{c} 2 & -5 \\ 3 & -4 \\ 4 & -3 \\ 10 & -3 \\ 3 & -2 \\ 5 & 9 & -2 \\ 4 & -1 \\ 8 & -1 \\ 9 & -1 \\ 8 & -1 \\ 9 & -1 \\ 5 & 0 \\ 11 & 0 \\ -9 & 1 \\ -9 & 2 \\ -10 & 3 \\ -3 & 4 \\ -9 & 5 \\ -7 & 6 \\ 7 \\ -5 & 7 \end{array}$	$\begin{array}{c} 51 \\ 418 \\ - \\ 102 \\ 243 \\ 86 \\ 149 \\ 54 \\ 117 \\ 63 \\ 84 \\ - \\ 225 \\ - \\ 192 \\ - \\ 192 \\ - \\ 71 \\ - \\ 43 \\ 47 \\ 47 \\ 105 \\ 94 \\ - \\ 98 \\ - \\ 146 \\ 36 \\ 53 \\ 62 \\ - \end{array}$	14 425 -85 2043 195 -85 -85 -102 262 7 -33 -47 104 1149 9 -177 79 113	8 -1 9 -1 -9 1 -7 1 -10 2 -9 2 -5 3 -7 4 -9 5 -7 6 -6 6 -8 7 0 -1 12 L = H K 3-12 0-11 4-11	65 92 156 37 57 186 39 159 38 98 41 43 167 61 43 61 47 61 50 66 47 61	-88 -156 -152 41 17 209 -25 -202 -35 122 -56 37 181 -70 26 73 39 FC 68 -13 -106	-9 7 -6 9 -3 9 -2 12 -1 12 0 12 -1 13 0 13 L = H K 2-13 1-12 3-12 4-11 4-10 7-10 3 -9 1 -8 3 -8 8 -8	100 1300 65 47 80 86 148 64 -3 FD 62 55 50 148 163 86 928 408 73 75 53 94 201	-143 -84 -38 72 61 -152 50 FC -47 28 -40 151 142 92 -117 410 -55 -64 -72 -213	L = H K 3-13 1-12 3-12 1-11 3-10 4-10 4-10 4-10 4-10 4-10 4-10 4-10 4	-2 F0 135 91 76 196 106 232 30 55 209 78 56 49 45 203 95 309 107 80 81 210	FC 138 -101 926 177 942 -55 1963 -499 -15 198 -499 -15 55 -93 55 -942 -202	$\begin{array}{c} 3-13\\ 3-12\\ 4-12\\ 1-11\\ 2-11\\ 3-10\\ 4-10\\ 7-10\\ 0& -9\\ 8& -9\\ 1& -8\\ 3& -8\\ 4& -7\\ 8& -7\\ 8& -7\\ 8& -6\\ 9& 4& -5\\ 7& -5\\ 9& -5\\ 9& -5\end{array}$	138 72 58 111 86 118 71 42 153 70 74 95 158 42 121 71 91 102 183 154	-138 -85 -80 101 68 64 -129 -65 179 53 126 117 165 26 115 115 111 -205 40 -150	$\begin{array}{c} -10 & -2 \\ -6 & -2 \\ 5 & -2 \\ 8 & -2 \\ -11 & 0 \\ -10 & 0 \\ 1 & 0 \\ 2 & 0 \\ 5 & 0 \\ 7 & 0 \\ 3 & 0 \\ 5 & 0 \\ 7 & 0 \\ 9 & 0 \\ -11 & 1 \\ 1 & 1 \\ 2 & 1 \\ 4 & 1 \\ 5 & 1 \\ 6 & 1 \\ 7 & 1 \\ 9 & 1 \end{array}$	295 260 106 295 99 548 1137- 2044 726 492 497 211 147 79 958 110 79 958 1407 854 373 671 212	236 269 94 61 299 -100 388 1299 -619 -619 -619 -185 -171 -101 -101 -105 -832 409 -270 -220	123456789235691236834678	66666667777888888999999	5611 221 371 371 504 453 92 .78 504 423 539 157 302 387 138 70 63 276 236 102 182	-643 211 356 -57 -490 442 -107 -86 552 -429 513 -146 552 -429 513 -146 281 -232 -97 321 -170		

			·			
			•			
		- 7 - 0 777 700	R 4 478 470 -4 -5 444 47			1 310 - 333
	2 10 379 350 3 10 193 -178	-2 -2 1707 1678	9 6 262 243 -5 -5 1054-104	6 8 2 245 238	5 100 100 4	1 290 -311
	4 10 294 -308	-1 -2 786 817	10 6 117 145 -3 -5 757 75	6 0 3 521 541 L	= 3 7	1 500 455
	5 10 213 195	-10 -1 299 266	0 7 147 194 -2 -5 511 50	0 1 3 151 - 175 Н К	FO FC 9	1 71 -88
	1 11 132 110	-6 -1 158 -152	1 7 297 311 -1 -5 876 -91	8 2 3 673 -720 -1-13	277 281 0	2 923 876
	2 11 82 -94	-5 -1 512 -492			2 309 337 1	2 285 -270
	4 11 143 128	-3 -1 817 790	5 7 213 219 -6 -4 533 -53	2 5 3 392 429 -1-11	361 - 344 3	2 910 -936
	5 11 178 163	-2 -1 382 -367	7 7 202 -192 -4 -4 871 77	5 6 3 446 -480 -3-10	92 82 4	2 291 -258
	0 12 71 22	-1 -1 532 584	0 8 542 558 -2 -4 331 -24	2 0 4 705 -498 -1-10	180 -160 5	2 280 257
	1 12 129 -163	0 1 285 308) 79 78 6	2 696 692
	1 13 75 77	2 1 1100+1086		9 3 4 690 747 0 -9	86 - 94 9	2 201 190
	3 13 193 -187	4 1 226 -195	4 8 342 350 -5 -3 485 47	3 4 4 416 446 -4 -8	495 491 0	3 267 -308
		6 1 388 -426	9 8 57 -66 -4 -3 240 -25	5 5 4 626 -635 -2 -8	281 -315 1	3 320 301
	L = 1	7 1 176 -145	1 9 211 -233 -3 -3 622 -60		7 177 174 2	3 147 108
	H K FO FC	8 1 349 305 0 1 249 228		1 / 9 JD1 J40 -8 -/ 5 8 8 225 230 -6 -7	7 208 195 J	J 088 -000 3 594 631
	-2-12 255 -258	10 1 146 -155	5 9 344 -362 -3 -2 274 24	3 10 4 162 -167 -5 -7	461 481 5	3 166 -180
	-4-11 62 49	11 1 178 -159	1 10 203 199 -2 -2 596 56	0 0 5 89 -98 -3 -7	7 511 -531 7	3 413 -415
	-3-11 132 -117	0 2 2125 2302	3 10 200 -186 -1 -2 1134 111	3 1 5 268 -297 -2 -7	7 59 -82 8	3 366 336
	-2-10 335 346	1 2 325 394		9 2 5 397 -413 -1 -7	7 098 749 U 7 102 -106 1	9 331 333 A 516 524
	-8 -8 125 -139	3 2 80 -78	3 11 207 234 -7 -1 349 -36	7 4 5 87 -80 -8 -6	5 150 -155 2	4 1348-1456
	-2 -8 277 272	4 2 165 -149	4 11 156 -156 -6 -1 379 33	3 5 5 71 76 -6 -6	5 <u>153</u> 175 3	4 179 195
	-9 -7 184 -178	5 2 101 -122	6 11 122 118 -5 -1 72 10	9 8 5 346 -327 -3 -6	5 354 -358 4	4 396 475
	-7 -7 166 179	6 2 237 -255		4 0 6 632 - 458 -1 -6 9 2 6 991 997 -5 -5	5 610 613 6 5 641 -605 8	4 109 -140 A 335 359
	-3 -7 374 357	9 2 191 -208	2 12 235 240 -1 -1 207 21	8 3 6 73 -80 -2 -5	5 325 315 10	4 57 40 N
	-2 -7 227 203	10 2 158 -162	4-12 268 -281 -8 0 430 -41	0 4 6 289 -302 -1 -5	5 348 318 0	5 93 94 Vi
	-1 -7 904 -894	11 2 145 143	5 12 190 203 -7 0 215 -21	6 5 6 165 -177 -7 -4	295 278 1	5 451 -450
	-7 -6 246 242	0 3 1774 1789		7 6 6 385 404 -4 -4	381 - 377 2	5 408 -423 5 107 142
	-0 -0 201 -304	2 3 286 -204	-4 0 1103-105	1 1 7 502 506 -2 -4	211 210 5	5 336 343
	-2 -6 503 -525	3 3 284 284	L = 2 -3 0 1418-122	4 2 7 424 -450 -1 -4	586 556 6	5 238 -258
•	-6 -5 473 462	4 3 75 -53	H K FO FC -2 0 1879 198	7 7 7 79 - 65 -9 -3	3 342 -333 8	5 216 -205
	-5 -5 278 274	5 3 358 -377			5 481 453 9	5 177 170
	-3 -5 341 -343	0 3 3/4 3//	-3-11 201 200 0 0 1104-142	0 1 8 218 214 -5 -3	3 341 - 359 1	6 360 -402
	-1 -5 221 246	9 3 67 -102	-2-10 445 -459 2 0 252 -28	1 4 8 272 -208 -4 -3	5 621 -634 2	6 411 -430
	-7 -4 409 409	1 4 74 -57	-1-10 57 98 3 0 723 -76	5 6 8 174 -99 -3 -3	937 961 3	6 355 395
	-5 -4 720 -772	2 4 939 983	-8 -9 121 131 4 0 513 -48		3 309 -243 5	6 246 -253
		4 4 315 *337 6 4 336 327		6 6 6 127 - 161 - 10 - 2 6 6 9 342 334 - 8 - 2	2 595 577 7	6 62 74
	-2 -4 97 -64	6 4 756 807	-6 -8 293 286 7 0 439 -41	6 1 9 248 270 -6 -2	2 629 -662 8	6 68 86
	0 -4 87 104	7 4 530 -542	-3 -8 285 -300 8 0 294 -31	5 2 9 162 -170 -5 -2	2 583 -587 1	7 571 -618
	-10 -3 175 -164	9 4 73 -81	-2 -8 263 257 9 0 302 29	3 3 9 265 -304 -4 -2	2 527 449 2	7 284 300
	-9 -3 243 245			0 4 9 143 159 -3 -2 6 5 9 218 206 -1 -2	2 301 207 3	7 311 339
	-6 -3 331 -353	1 5 571 581	-5 -7 310 -301 2 1 691 -68	5 6 9 161 -131 -7 -1	307 -317 5	7 288 -262
	-5 -3 899 966	2 5 436 ~470	-3 -7 157 127 4 1 265 30	8 7 9 164 -147 -6 -1	203 -196 6	7 155 138
	-3 -3 1389-1346	3 5 116 125	-2 -7 198 204 5 1 468 48	8 0 10 446 433 -4 -1	839 747 7	7 67 45
	-2 -3 295 -214	4 5 76 77			1 310 -332 0	8 200 -208 8 81 57
	-1 -3 352 307	5 5 134 128 7 5 260 -244		4 10 267 263 -1 -1	966 869 3	8 168 -164
	-9 -2 88 111	0 6 348 ~339	-3 -6 186 167 0 2 239 -20	8 1 11 400 -396 0 1	1294-1341 6	8 131 153
	-8 -2 128 -105	1 6 469 -467	-2 -6 145 123 1 2 506 -42	5 3 11 214 172 1 1	1637-1756 7	8 189 -180
	-5 -2 561 522	2 6 263 257			1 917 905 1 643 572 2	9 400 900 9 154 -157
		A D ADD *463		2 0 11 01 94 3 1		

												•										
3 9	171	- 162	-10	-2	81	-81	24	1254	1260	-1	-7	625 -586	15	350	-346	-3 -5	629	641	04	817	750	
4 9	67	96	-8	-2	232	-166	3 4	314	-276	-4	-6	501 472	3 5	261	288	-1 -5	649	-669	1.4	278	-280	
6 9	63	94	-5	-2	429	-456	4 4	737	-740	-2	-6	355 -359	45	44	-51	-6 -4	507	-502	24	164	-141	
89	61	79	-3	-2	180	-196	54	94	76	- 1	-6	208 208	65	134	-134	-4 -4	763	764	4 4	157	-70	
1 10	356	370	-2	-2	646	668	6 4	356	336	-9	-5	71 67	0 6	843	-870	-2 -4	785	-792	5 4	305	-302	
3 10	111	112	-1	-2	409	-452	05	343	368	-7	-5	281 316	1 6	188	-198	-1 -4	329	376	69	200	248	
4 10	145	-140		-1	332	-352	1 3	130	-176	-2	-5	212 100	20	225	-236	-3 -3	200	-302	0 6	185	-175	
5 10	260	261	-7	-1	177	177	4 5	847	882	-6	-4	297 -296	5 6	313	-321	-2 -3	278	-282	0 5	86	-84	
1 11	195	184	-6	-1	265	250	. 6 5	267	-257	-4	-4	299 317	9 6	221	213	-1 -3	360	323	1 5	476	-481	
2 11	118	-106	- 4	-1	801	-729	75	134	-103	-3	-4	257 251	07	218	222	-10 -2	: 76	-86	25	384	393	
5 11	209	216	- 3	-1	388	403	10 5	177	-184	- 2	-4	496 -529	17	582	555	-8 -2	233	200	45	463	-467	
6 11	195	-180	-2	-1	613	-545	0 6	368	354	-1	-4	142 -172	27	231	-268	-6 -2	457	-433	5 5	363	-381	
0 12	391	346	-1	-1	1149-	1096	16	129	115	-8	-3	380 390	4 7	149	141	-9 -2	: 492 577	479		324	331	
2 12	170	-193	-10	0	394	-282	20	380	265	- /	-3	401 -491	5 / 1 A	203	-230	-1 -2	1102	080	0 0	552	-547	
1 13	151	-190	- 6	ŏ	536	483	5 6	378	-389	-5	-3	440 450	28	125	-118	-7 -1	290	-315	1 6	693	694	
. 15.			-7	ŏ	694	654	76	162	140	-3	-3	537 -481	4 8	283	284	-5 -1	685	698	2 6	298	342	
L =	4		-6	Ō	535	-470	07	233	-222	-1	-3	429 461	58	324	-319	-3 -1	520	-476	56	325	338	
нк	FO	FC	-5	0	440	387	1 7	392	351	-9	-2	368 335	68	130	-132	-2 -1	78	-93	0 7	256	262	
-1-13	79	93	-4	0	815	-724	2 7	512	-521	-8	-2	208 -203	78	184	190	-1 -1	1196	1232	. 1 7	542	-530	-
-2-12	302	-286	3	0	801	823	6 7	132	-150	-7	-2	357 - 354	88	145	142	+10 0	122	100	2 7	200	200	
-1-12	71	94	-2	0	733	-591	77	117	98	-6	-2	230 252	0 9	1/0	-191	-9 0	155	-102	A 7	74	-80	
-3-11	20/	-285	-1	0	382	-202	1 8	502	-528	-3	-2	506 533	3 9	76	97	-7 8	105	-129	o a	229	-234	
-1-11	200	218	1	ŏ	226	171	2 8	157	-194	-2	-2	818 809	4.9	241	-254	-6 0	172	150	1 8	293	-307	
-6-10	352	309	2	ō	395	-376	. 4 8	257	270	-1	-2	419 -430	5 9	82	-85	-3 0	137	25	28	264	257	
-2-10	336	298	3	0	355	-295	58	121	123	-7	-1	177 185	1 10	176	-157	-2 0	905	860	58	192	-196	N
-3 -9	316	303	4	0	1067	1113	68	196	-149	-4	-1	258 236	. 510	64	80	-1 0	1263	-1270	68	175	165	
-1 -9	466	-461	- 5	0	210	-206	1 9	614	-622	-3	-1	336 355	0 11	157	164	0 0	957	-957	0 9	135	-133	6
-4 -8	201	174	6	0	390	-364	4 9	66	- 702	-1	-1	1227-1292	1 11	308	-294	2 0	505 (546	5 O	230	230	
-3 -8	145	-1/0		0	620	230	3 10	298	-133		1	337 335	3 11	61	76	3 0	255	201	6 9	155	-148	
-3.+7	461	424	ő	ň	470	-431	4 10	116	-128	3	i	566 -538	4 11	88	-86	4 0	474	-541	0 10	123	110	
-7 -6	283	-282	ō	ī	1075-	1094	5 10	199	167	5	1	220 194	0 12	217	-208	5 0	490	483	3 10	234	2 39	
-6 -6	112	-19	1	1	589	-548	6 10	205	185	8	1	119 104	2 12	264	258	6 0	109	109	6 10	237	-205	
-4 -6	205	201	2	1	67	-82	1 11	162	176	10	1	181 -174	3 12	119	-165	70	371	-357	2 11	75	78	
-3 -6	243	195	3	-1	674	690	2 11	113	-96	0	2	744 779	• -			10 0		133	3 11	222	204	
-2 -6	675	-702	<u>+</u>	1	376	-380				1	2		L =		FC		POC 365	354	5 11	100	-105	
-1 -0	500	-1/0	0	-	391	-153		- 5 FN	FC	3	2	54 -69	-1-12	150	-165	3 1	42	-60	L =	= 7		
-7 -5	599	-609	Ó	2	906	-873	-1-12	102	-130	4	2	509 517	0-11	167	143	5 1	191	191	Н (К	FO	FC	
-6 -5	321	-277	1	2	427	-376	-3-11	293	-275	5	2	310 -332	-6-10	153	-142	6 1	374	-340	-2-12	127	147	
-5 -5	190	233	2	2	706	-545	-1-11	130	149	0	3	213 -253	-6 -9	144	-129	71	. 77	124	-2-10	238	-245	
-4 -5	285	298	3	2	365	373	-5-10	171	162	1	3	571 -578	-1 -9	246	235	8 1	204	173	~1-10	198	201	
-3 -5	746	-766		2	212	-154	-4-10	75	-53	2	3	587 588	-4 -8	322	-280	10 1	183		-4 -9	141	- 60	
-2 -5	322	312	· 5	2	219	170	-3-10	275	-130	د •	3	350 403	-2 -8	148	-144	2 2	422	79	-2 -9	139	142	
-10 -4	140	144		2	376	-273	-5 +9	424	415	7	3	148 128	-7 -7	448	-431	3 2	254	248	-1 -9	87	-102	
-8 -4	303	-295	ğ	2	109	136	-3 -9	169	-149	9	3	256 -228	-5 -7	313	282	4 2	81	24	~4 -8	319	303	
-4 -4	420	-405	0	3	815	-836	-2 -9	239	-241	10	3	184 190	-2 -7	313	-285	62	199	187	~3 -8	135	~103	
-2 -4	362	232	1	3	173	-207	-1 -9	165	187	0	4	570 -607	-7 -6	296	-312	8 2	132	-102	-2 -8	197	~198	
-1 -4	151	150	2	3	620	581	-6 -8	287	286	1	. •	344 330	-6 -6	374	334	0 3	222	-212	-1 -8	215	213	
0 -4	58	-28	3	3	816	836	-1 -8	161	-159	2		228 214	-2 -6	947	434	13	100	733	-5 -7	220	~43	
-8 -3	185	-202	4	3	144	177	-8 -7	281	-253	4 5	4	233 -227	-8 -5	301	-133	2 3	415	-427	-1 -7	380	390	
-5 -3	203	-213	7	3	230	225	-5 -7	204	-225	.6	4	114 -107	-7 -5	330	323	5 3	298	-295	-6 -6	263	267	
-3 -3	123	126	9	3	68	109	-4 -7	212	-234	9	Á.	60 67	-6 -5	192	-212	83	292	278	~5 -6	159	1 39	
-1 -3	172	149	1	4	145	148	-3 -7	464	457	0	5	150 -153	-4 -5	260	277	93	54	-65	-4 -6	547	~560	

-3 -6 262 -237 -2 -6 390 401		1 584 555 0 9 254 -272	2 3 593 575 -3 -2 266 -240 3 3 193 208 -2 -2 422 351	-3 -7 293 -266
-6 -5 314 -297	5 6 139 -124 -3 -	1 263 257 3 9 203 201	4 3 161 -150 -1 -2 208 182	-2 -6 110 110
-4 -5 135 -145	6 6 140 -155 -1 -	1 545 -531 0 10 257 -248	5 3 237 -223 0 -2 149 130	-5 -5 302 -293
	7 6 187 184 -8 8 6 101 107 -6	0 417 415 2 10 235 217 0 368 -358 4 10 114 -132		-9 -5 296 296
-10 -4 201 219	1 7 410 -372 -5	0 295 -255 1 11 264 261	3 4 339 -319 -5 -1 86 101	-8 -4 247 -228
-7 -4 625 -636	2 7 243 236 -4	0 1156 1168 0 12 55 -13	5 4 68 105 -3 -1 393 -396	-2 -4 346 342
-1 -4 278 -271	5 7 280 -299 -2	0 622 -531 L = 9	7 4 287 -262 0 -1 173 -175	-6 -3 229 -233
-5 -3 529 -515	7 7 133 123 -1	0 111 -125 H K FD FC	0 5 233 -244 -8 0 287 -275	-5 -3 110 -132
-4 -3 570 568 -2 -3 253 200	8 7 189 -164 0 0 8 515 -495 1	0 915 958 -3-11 53 -35		-3 -3 554 595
-1 -3 950 -987	1 8 485 489 2	0 165 167 -3 -9 243 -259	7 5 40 13 -4 0 872 -827	-1 -3 311 -342
-6 -2 721 -720	3 8 174 -210 3	0 559 612 -4 -8 510 -510	1 6 384 359 -3 0 220 224	-9 -2 185 -165
-4 -2 829 890	4 8 312 -290 4 6 8 126 169 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-6 -2 117 -116 -3 -2 54 19
-3 -2 226 -219	2 9 137 -113 6	0 548 -544 -7 -6 311 278	5 6 111 120 0 0 590 -609	-2 -2 864 -851
-2 -2 710 -696	5 9 251 226 7 6 9 85 -113 8	0 269 253 -6 -6 246 -254	0 7 302 322 1 0 304 -229	
-6 -1 200 -185	0 10 221 233 1	1 403 +407 0 -6 93 -84	5 7 198 191 8 0 225 196	-5 -1 130 -133
-5 -1 686 708	1 10 267 -250 2	1 161 189 -8 -5 161 146	6 7 82 -72 1 1 646 594	-4 -1 175 -191
-3 -1 471 -400	2 10 149 136 3 5 10 70 65 4	1 62 60 -7 -5 260 -260		-3 -1 423 -401
-1 -1 773 675	3 11 229 -194 5	1 325 -324 -3 -5 177 198	2 8 162 -155 2 2 352 -335	-1 -1 580 542
0 -1 118 136	4 11 229 221 6	1 505 486 -4 -4 189 196	5 8 64 -67 3 2 391 413	0 1 346 -310
6 1 645 655	0 12 134 135 /	1 110 93 -9 -3 321 327 2 35 54 -7 -3 262 -252	0 9 112 110 6 2 249 -204 1 9 253 -231 7 2 153 159	3 1 364 325 0:2 353 -345
7 1 123 -115	L = 8 3	2 429 -443 -6 -3 324 -324	8 2 86 79	2 2 584 564
	H K FO FC 4	2 237 210 -5 -3 574 567		3 2 107 -84
1 2 811 810	-2-10 372 318 8	2 59 9 -1 -3 221 269	-4-10 317 314 3 3 167 -137	0 3 128 142
2 2 236 -214	-1-10 144 -131 0	3 481 483 0 -3 88 -103	-2-10 288 -278 5 3 110 99	1 3 101 -79
4 2 146 -160	-D -8 197 -160 2 -1 -8 301 298 4	3 324 329 -10 -2 175 211 3 373 -375 -8 -2 373 -402	0-10 179 185 7 3 76 100 -5 -9 269 263 2 4 506 -518	3 3 189 ~200 6 3 318 307
5 2 486 494	-2 -7 102 -102 6	3 226 222 -6 -2 289 284	-4 -9 200 -203 3 4 262 258	4 4 196 188
6 2 199 166 7 2 337 -310		4 694 680 -5 -2 343 360		5 4 217 -230
8 2 133 -120	-2 -6 255 -247 6	4 249 225 -2 -2 439 459	-4 -7 216 224 1 5 428 -432	3 5 230 227
1 3 631 684	-5 -5 324 337 8	4 199 -174 -9 -1 209 -210	-1 -7 162 -149 2 5 120 113	0 6 545 539
2 3 330 -284 5 3 415 428		5 959 948 -6 -1 334 315		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 3 494 -484	-8 -4 278 -290 4	5 147 168 -4 -1 518 -492	-7 -5 214 221 7 5 112 120	6 7 156 144
7 3 63 -100	-6 -4 643 653 5	5 291 288 -3 -1 83 -107	-5 -5 347 -341 1 6 111 -129	0 8 70 -64
9 3 123 124		5 110 -124 0 -1 202 222 6 444 385 1 1 742 736		
0 4 564 543	-7 -3 541 490 1	6 217 -218 2 1 534 -533	-9 -4 193 -184 4 7 226 208	2 9 114 -112
I 4 414 -432 3 4 55 -80	-4 -3 427 -400 2	6 321 -321 3 1 352 -353 6 186 167 A 1 240 250	-6 -4 259 -223 5 7 140 -145 -5 -4 228 224 0 9 366 -337	4 9 202 200 0 10 165 -169
5 4 60 -63	-1 -3 485 478 0	7 325 341 5 1 380 335	-2 -4 310 -277 1 8 329 311	A 10 103 -104
6 4 62 -77	-10 -2 121 118 1	7 386 -343 6 1 289 -288	-1 -4 279 273 4 8 198 -214	L = 12
7 4 191 178 0 5 449 -471	-7 -2 285 -282 3	<i>r 22</i> 4 240 0 2 530 511 7 116 -117 1 2 559 -557	u -9 359 327 0 9 299 286 -5 -3 194 -176 1 10 77 -65	H K FU FC -1-10 118 -126
2 5 121 162	-6 -2 271 258 6	7 72 100 2 2 552 -511	-4 -3 188 -193	-4 -8 326 304
3 5 88 -98	-4 -2 374 -326 0	8 240 -249 3 2 392 413	0 -3 397 -403 L = 11	
5 5 77 -153		8 279 192 5 2 76 -83	-9 -2 90 -77 M K PU PC	-3 -6 138 122
7 5 161 -161	-9 -1 354 -332 5	8 112 -133 6 2 370 -344	-6 -2 243 245 -3 -9 171 171	-2 -6 252 -234
A 2 100 158	-0-1 03 40 7	0 54 49 1 3 579 *550	-5 ~2 333 -329 -1 -8 90 85	-1 -0 180 159

317	-219	177	105			-152	-127	148	155	-223	-238	141	240	-244	221	001-		500	-158	641	-254	267	209	-155	+11+		1				-25	-163	243	-252	-116	221	167	317	-298	10	062-					FC	206	-256	-158				
126	206	191	116		51		127	Ē	155	220	221	135	235	246	233			115		125	240	290	214	128	107		9				0	192	213	238	138	2		380	315	25			2	•	17	F0	205	268	44				
LC.	i io	•	~		<u>,</u>	"	• •	'n	1	1	ņ	ņ	ŗ	ņ	n 1	N N	"	1		-	~	N	~	~	~		, r	K N	P 1	17	- m - 1	ĩ	7	7	7 '	> ¢) a	•	•	-	-	• •	u 4	•	्॥ ्य	×	ñ	٧	N t				
•	. 0	-	r)		:	te	, 1	• •	•	1	ņ	1	n 1	7	0	? :	•	1		• •	0	-	N	n	4		:	I		1	Ņ	1	7	Ņ	7!	? 1	, <u>†</u>	•	N	0	- 4	• •	n e)		I	Ņ	1	0				
	-197	139	126	-206		- 208	492	-154	462	-271	228	146	-327	116	5		174	E92-		-255	92	-154	139	E11-	105			-157		J 3	-235	44	88	-259	-126		EOI	-193	-148	19 E			225	- 367	225	250	-322	175	196	162	411-	135	
204	214	102	101	216	52		278	DEI	468	244	247	88	280	103	6			276		265	50	121	131	171	115	0	\$ I	173	:	-	225	10	4	278	119			207	173	56E			573		25.4	265	327	193	232	132	0 (0	327	
9 -	, o	ę	Ŷ	1	•		2	'n	Ŷ	٢	ř	7	7	7	- 1	N		1 17	• m	•	•	6	ø	•	•0 1	•	•	0	-	j	-	Ŷ	in t	1	n (7 7		7	•	•	•	,	, a	0	9 0	-	-	-	2	2	n i	'nω	
4	'n	0	0	°	1		- 10	1	9	1	Ņ	2	in 1	0	•	-	•	7 0	•	• •	ŝ	•	N	n	6	•	0	-		3	1	1	Ŧ	Ŷ	-		5 m	0	-1	9		• •	> ~	• •	e ud	-	N	ii)	•	~	n.	e 0	
-281	245	- 155	267	-363	505	100	170	90	203	267	101	299	- 124-	214	094-			191	282	8	-427	123	103	107	230	-263	160					-205	166		E 01		-223	200	-194	-201		4 A C E C		150		147			F C	-148	120	-177	
202	243	179	284	380	262	575	168	20	230	279	186	515	400	185	1) - 4 4	102		551	906	H	466	115	129	SII.	223	2692	221				2	222	173	113	208		223	224	215	402	187		165	135	8	115		5	ũ	104	136	250 1 8 2	
' ų	- 10 1	1	1	1	11		1	i m	ş	7	7	7	7	•	0	•		9 9	0	• •	•	•	0	-	-	- 1-	- 1	N N	u 6	u n	1	n	-	m	•	* 4	r in	ŵ	IJ	• •	0 1	,		-	•	0		11 -3	¥	î	P	P 0	
5	1	8	0	1	Ņ) I) 4	0	Ŷ	5	1	7	7	5	Ŷ	1 1	1	17	• •	n n	n	10	~		m -	•	0 (• •		P 10	7	-	N	n	~	•	2	4	•	- (N P	•	10) #1	N N	N			I	0	Ŷ	7 9	

SUMMARY

Nitrosyl Complexes

The 18-electron complexes $Cp(NO)_2W(PR_3)^+$, where R is Ph, OPh, OMe, undergo facile one-electron reduction to give the 19-electron radical compounds, $Cp(NO)_2W(PR_3)$. This reduction is accomplished with chemical reducing agents (hydrazine, alkoxides or zinc) or electrochemically. Cyclic voltammetric studies reveal that the reduction is quasi-reversible, and the reduction potential increases as the σ donor/ π acceptor ratio of the ligand decreases: PPh₃ > P(OMe)₃ > P(OPh)₃. ESR spectra of the PPh₃ and $P(OPh)_3$ complexes are obtained and show a tenline pattern resulting from hyperfine coupling of the electron with the ${}^{31}P(1=\frac{1}{2})$ and two equivalent ${}^{14}N$ nuclei (1=1).X-ray structural data for the $P(0Ph)_3$ derivative show that the N-W-N angle (102.7°) is noticeably larger than that (92.0°) in the 18-electron chloro analog, Cp(NO)₂WCl. In addition, the 19-electron complex has shorter W-N but longer N-O bonds than in $Cp(NO)_2WC1$. The structural differences between these complexes may be understood if the 19th electron occupies an orbital which has substantial NO 2π character, is antibonding between the two NO ligands, and is antibonding between the N and O atoms of each NO ligand.

The P(OPh)₃ radical derivative is readily oxidized back to $Cp(NO)_2W(P(OPh)_3)^+$ by oxidants such as Ag^+ , Ph_3C^+ , $MeOSO_2F$, CF_3SO_3H and I_2 .

Carbene Complex

In the course of these investigations, we improved the synthesis of $Cp(CO)(L)Fe[CH(SMe)]^+$, which had been previously prepared in small quantities, by the reaction of $Cp(CO)(L)Fe[C(SMe)_2]^+$ with $(Et_3BH)Li$, followed by acidification (Eqn. 1).

HSMe

These thiomethoxyl secondary carbone complexes are modestly stable in air. In the case where L is CO, this complex decomposes upon contact with H_2O to give $Cp(CO)_3Fe^+$ and $Cp(CO)_2FeCH_2SMe$ in equal amounts. This disproportionation reaction is presumed to go through a formyl intermediate, $Cp(CO)_2FeCHO$.

The $Cp(CO)_2 Fe[CH(SMe)]^+$ complex reacts with a variety of tertiary phosphines, phosphites and amines to afford the corresponding adducts, $Cp(CO)_2 Fe[CH(SMe)(L)]^+$, where L is MePPh₂, PPh₃, CIPPh₂, PCI₃, P(OPh)₃, $P(OCH_2)_3 CMe$ or pyridine. These adducts are noticeably more stable than the parent carbene complex. An X-ray structural determination of the $P(OCH_2)_3 CMe$ adduct shows that the iron methine, Fe-Cl, bond distance is close to that typical of σ bonds in $Cp(CO)_2 FeR$ complexes; the Cl-P bond distance is similar to those in single-bond carbene phosphine adducts, MCH(R)PR¹₃. The C1-S bond length is normal for a σ bond such as those in MeSR(R = H, Me).

The PPh₃ and P(0CH₂)₃CMe adducts decompose at elevated temperatures to provide $Cp(CO)_2FeL^+$ (L = PPh₃, P(0CH₂)₃CMe, respectively); the other product identified in the pyrolysis reaction of the PPh₃ adduct are cis and trans MeSCH = CHSMe, HC(SMe)₃ and Cp₂Fe.

Dialkyl and alkyl phosphines also form stable adducts, $Cp(CO)_2Fe[CH(SMe)(L)]^+$, (L = PPh₂H, PCy₂H, PPhH₂ or PCyH₂), with $Cp(CO)_2Fe[CH(SMe)]^+$. The solid PPh₂H and PCy₂H adducts readily decompose to give the phosphine complexes, $Cp(CO)_2Fe[PR_2(CH_2SMe)]^+$, (R = Ph, Cy), in low yields at 168°C and 200°C, respectively. It is not entirely clear how the rearrangement reaction takes place, but it appears to be base catalyzed. The base involved in the rearrangement is believed to be PR_2H which may be formed by dissociation from the adduct (Scheme 1).

 $C_{p}(CO)_{2}FePR_{2}CH_{2}SMe^{+} \ll \frac{-B}{BH^{+}} C_{p}(CO)_{2}FePR_{2}CHSMe$

Scheme	l
--------	---

The PPh₂H adduct reacts with strong bases (n-BuLi or Et_3^N) to afford Cp(CO)₂Fe[CH(SMe)(PPh₂)] and a small amount of Cp(CO)₂Fe[PPh₂(CH₂SMe)]⁺.

The Cp(CO)(L)Fe[CH(SMe)]⁺ (L = CO, P(OPh)₃) complexes react with Et₂NH to furnish the amino carbene complexes, Cp(CO)(L)Fe[CH(NEt₂)]⁺. The ¹H and ¹³C spectra of both compounds display two distinctive methylene and methyl groups which are indicative of a high C-N bond rotational barrier caused by strong N to C p-p π -bonding. Likewise, Cp(CO)₂Fe[CH(NMe₂)]⁺ is prepared by reacting Me₂NH with the corresponding thiomethoxyl carbene complex. This compound is found to react with excess Me₂NH to give Cp(CO)₂FeH and NNN¹N¹-tetramethyl foramidinium.

Other primary amines (MeNH₂, CyNH₂, i-PrNH₂, t-BuNH₂) also react with $Cp(CO)_2Fe[CH(SMe)]^+$ to give the corresponding amino carbene complexes, $Cp(CO)_2Fe[CH(NHR)]^+$ (R = Me, Cy, i-Pr, t-Bu). The yields of these reactions are in the range of 28-38%. The poor yields are due to a secondary reaction, in which, the amino carbene reacts further with excess amine to give $Cp(CO)_2FeH$ and the NNLdialkyl foramidinium ion. The most likely mechanism of this secondary reaction is believed to be a β -hydrogen elimination of the ammonium complex (Scheme 2).

$$C_{p}(CO)_{2}Fe=C + NH_{2}R \longrightarrow C_{p}(CO)_{2}Fe - C - NHR$$

$$HNHR + HNHR$$

$$G_{p}(CO)_{2}FeH + [RHNCHNHR]^{+}$$

Scheme 2

The primary amino hydrido carbene complexes, $Cp(CO)_2Fe[CH(NHR)]^+$, are exclusively in the trans (E) configuration. When the amino hydrogen is removed with NaOH-EtOH, syn and anti isomers of $Cp(CO)_2Fe[CHNR]^+$ are detected in the ¹H NMR spectra of the compounds with R = i-Pr or Cy. On the other hand, the anti isomer is the sole form of the t-Bu analog. The mechanism for the rapid interconversion of the iminoylformyl compounds upon deprotonation of the carbene precursors is believed to be an inversion about the nitrogen atom (lateral shifting) rather than a C-N bond rotation. When the $Cp(CO)_2Fe[CHNR]^+$ (R = i-Pr, Cy) is alkylated with excess MeOSO₂F, E and Z isomers of $Cp(CO)_2Fe[CH(NMeR)]^+$ are obtained, and the E isomer predominates when the concentration of MeOSO₂F is reduced.

The carbonyl ligand of $Cp(CO)_2 Fe[CH(NHCy)]^+$ is photolytically labile; ultraviolet irradiation of the complex in MeCN gives $Cp(CO)(MeCN)Fe[CH(NHCy)]^+$. The identical complex may also be prepared by reacting $Cp(CO)_2 Fe[CH(NHCy)]^+$ with Me₃NO in MeCN.

The complex $Cp(CO)_2 Fe[CH(NH_2)]^+$ has also been prepared by the reaction of $Cp(CO)_2 Fe[CH(SMe)]^+$ or $Cp(CO)_2 Fe[CH(SMe)(Pyr)]^+$ with NH₃. Finally, $Cp(CO)_2 Fe[CH(SMe)]^+$ reacts with diazomethane at room temperature, yielding a stable deep red S-bound olefin complex, $Cp(CO)_2 Fe[SMe(CH=CH_2)]^+$.

ADDITIONAL LITERATURE CITED

1.	Connelly, N. G. <u>Inorg</u> . <u>Chim</u> . <u>Acta</u> <u>Rev</u> . 1972, <u>6</u> , 47.
2.	Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry," 3rd ed.; Wiley: New York, 1972; pp. 713-719.
3.	McCleverty, J. A. <u>Chem</u> . <u>Rev</u> . 1979, <u>79</u> , 53.
4.	Fischer, E. O.; Maasböl, A. <u>Angew. Chem. Int</u> . <u>Ed</u> . 1964, <u>3</u> , 580.
5.	Brown, F. J. <u>Prog</u> . <u>Inorg</u> . <u>Chem</u> . 1981, <u>27</u> , 1.
6.	Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. <u>Chem</u> . <u>Rev</u> . 1972, <u>72</u> , 545.
7.	Haines, R. J.; Leigh, G. J. <u>Chem</u> . <u>Soc</u> . <u>Rev</u> . 1975, <u>4</u> , 155.
8.	Calderon, N.; Ofstead, E. A.; Judy, W. A. <u>Angew. Chemie Int. Ed.</u> Eng. 1976, <u>15</u> , 401.
9.	Master, C. <u>Adv</u> . <u>Organomet</u> . <u>Chem</u> . 1976, <u>17</u> , 61.
10.	Muetterties, E. L.; Stein, J. <u>Chem</u> . <u>Rev</u> . 1979, <u>79</u> , 479.
11.	Pruett, R. L. <u>Science</u> 1981, <u>211</u> , 11.
12.	Kirmse, W. "Carbene Chemistry"; Academic Press: New York, 1971, Vol. 1.
13.	Jones, J, Jr.,; Moss, R. A. "Carbene"; Wiley: New York, 1973, Vol. l.
14.	Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. <u>Am</u> . <u>Chem. Soc</u> . 1979, <u>101</u> , 585.
15.	Kostic, N. M.; Fenske, R. F. <u>Organomet</u> . 1982, <u>1</u> , 974.
16.	Schilling, B. E. R.; Hoffmann, R.; Faller, J. W. <u>J. Am. Chem</u> . <u>Soc</u> . 1979, <u>101</u> , 592.
17.	Gladysz, J. A. <u>Adv. Organomet. Chem</u> . 1982, <u>20</u> , 1.
18.	Brookhart, M.; Trucker, J. R.; Flood, T. C.; Jensen, J. <u>J. Am</u> . <u>Chem</u> . <u>Soc</u> . 1980, <u>102</u> , 1203.

· •

•

- 19. Kegley, S. E.; Brookhart, M.; Husk, G. R. <u>Organomet</u>. 1982, <u>1</u>, 760.
- 20. Bodnar, T.; Cutler, A. R. J. Organomet. Chem. 1981, 213, C31.
- 21. Schrock, R. R. Acc. Chem. Res. 1979, 12, 98.

đ

22. McCormick, F. B.; Angelici, R. J. Inorg. Chem. 1981, 20, 1111.

ACKNOWLEDGMENTS

I am deeply indebted to my brothers and sisters: Judy, Helen, Simon, Raymond, Myron, Allen and Kwai-Fong, for their love, support and constant encouragement. I would like to express my gratitude to Professor Robert Angelici whose direction and enthusiasm have made this work possible. I wish to thank Professor Robert Jacobson and Jim Richardson for their helpful assistance on X-ray studies, and Professor Glen Russell for his consultation. I would like to offer special thanks to Professor John Gladysz for introducing me to chemical research. It has been a distinct pleasure working with Dan Plummer and Norm Schroeder, and friendships from Steve Socol, Pui-Kwan Tse, Peter Gottschalk and Mrs. Bev Mullen are dearly treasured.

ì