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SYMBOLS AND ABBREVIATIONS

acac acetylacetonato ligand
Bu butyl

br broad

Cp n5-cyclopentédienyl

Cy cyciochexyl

d doublet

Dabco 1,4 diazabicycio [2,2,2] octane
dppe 1,2 bis(diphenylphosphino) ethane
Eqn. equation or reaction
eqv. eduivalent

Et ethyl

h | heptet

L donor 1ligand

M- ' metal atom or complex
m multiplet

Me methyl

Ph phenyl

PPN" [(PhyP) NI"

Pr propyl

q quartet

Pyr pyridine

R orgahic subs£ituent

t triplet



THF

TMS

TPP

vi

tetrahydrofuran
tetramethylsilane
meso-tetraphenylporphyrin

infrared stretching mode



GENERAL INTRODUCTION

Nitrosyl Complexes

Transition metal nitrosyl complexes have been known for yearsl,
although they have attracted less attention than metal carbonyl com-
plexes. Nevertheless, hundreds of publications concerning nitrosyl
compounds have been cited.

The bonding of an NO ligand to a metal is similar to that of CO;
the sp hybridized lone electron pair on the nitrogen is bound to a metal
in a 0 fashion while the m* orbitals of the NO accept electron density
from the metal d orbitals via a 7 interaction. The m-bonding effect
strengthensﬂthe M-N bond and weakens the N-0 bond; the extent of this
effect depends upon the metal and its auxiliary ligands. By and large,
the NO ligand is regarded as being a better m acid than CO.

The bonding modes for metal coordinatedlterminal NO ligands are
believed to be diverse, including those in which the NO is a.one or
three electron donor ligand. As a single electron donor ligand, the
unpaired electron on nitrogen is bonded to the metal forming a bent
M-N-0 angle (Figure 1-A). The M-N-0 angle in these complexes is found
to be in the range of 120-140° by X-ray crystallographic studies.2
The v(NO) frequencies for bent NO complexes fall.in the 1525-1690 cm_]
range. As a three-electron donor ligand, the lone pair and unpaired
electrons are all involved in bonding with the metal (Figure 1-B).

This type of bonding often gives M-N~0 angles which are close to linear



(170-175 ). |

In recent years, the chemistry of the coordinated NO ligand has
been explored3. Based on studies of reactions between NO complexes
and nucleophiles, it was suggested that mononitrosyl metal complexes
having V(NO) values greater than 1886 cm_l or f(NO) higher than 13.8
mdyn R-' are susceptible to nucleophilic attack at the NO.nitrogen atom.
Though less predictable, low V(NO) wavenumber complexes, below 1806 but

as high a5.]852 cm'l,.are liable to attack by electrophiles at the ni-

trogen.
\S M=N=0

Figure 1. Nitrosyl bonding modes

Carbene Complex

One of the mos£ intriguing developments in trénsition-metal
chemistry is the discovery of metai carbene complexes. |In 1964,
Fischer and Massbﬁlh succéssfully synthesized a stable carbene complex
of tungsten, (CO)SW[C(OCHB)Ph]. Since that initial discovery, hun-
dreds of carbene cémplexes have been éharacterized, and their chemis-

5-6

try has proven to be rich and varied. The popularity of transi-

tion-metal carbene chemistry was partially sparked by interest in a



7-8

number of metal-catalyzed organic reactions, olefin metathesis,

9-11 -13

Fischer-Tropsch.synthésis and cyclopropa»mation,]2 in which a
metal carbene is postulated as a key intermediate. Potential indus-
trial applications of these catalytic reactions have stimulated in
recent years much interest in the roles whicﬁ metal carbenes play

in these reactions.

An isolated carbeﬁe group is frequently.dépicted as :CXY. When
it is incorporated into an organometallic compound by bonding to the
metal, the resulting complex is written as LnM(:CXY), where M is the
metal and Ln'représents tﬁe auxfliary 1igands bondéd to the metal. In
general, the structure of a transifion-metal carbene complex is planar
where X, Y and M are approximately coplanar about the carbene carbon,

carb (Figure 2). However, the geometry of the carbene ligand relative
to Ln varies considerably; for example, in.Cp(CO)ZFeCH2+, the carbene

can be in an axial (A), equatorial (B) or somewhere between the two

positions with respect to Ln (Figure 3).

(::\/i:> = | (:
OQ \ QC H OC “H
A B

Figure 2. Bonding scheme for. Figure 3. The possible configurations
carbene 1igand for Cp(C0) ,FeCH,*



A theoretical calculation]h suggests A is more favorable than B due

to better orbital overlap. The same conclusion is also reached for
Cp(PH3)2FeCH2+.]5 However, in the case of Cp(CO)NOl‘-’eCsz"',]6 the

carbene ligand adopts a geometry almost coincident with the metal-

nitrosyl bond (Figure 4).

cp 2

|
OC>§\NO

The predicted geometry for Cp(CO)(NO)FeCHz2+

Figure 4.

The bonding of a carbene ligand in organometallic compounds may

be represented by the three canonical forms illustrated in Figure 5.

.
X X
ol R Vi Lo
- *— | M—C - —
LnM=RQ MR LR
Y Y
A B C

Figure 5. Resonance structures for carbene complexes



The ccarb is bonded to the metal by donating a pair of electrons local-
ized in an sp2 hybridized orbital into a vacant metal orbital; at the
same time the empty Ccarb Pz orbital which is perpendicular to the M-X-Y
plane accepts d-electron density from the metal and from the lone pair
P-electrons of the adjacent X and Y groups. The extent of d-P and

p-p T bonding is primarily dependent upon the nature of the X and Y

groups. When either X or Y is a heteroatom (N, 0 or S) with lone pairs
available for 7 backbonding to the Ccarb’ some double-bond character
between CCarb and X, Y is expected as represented by resonance struc-
ture C. When X and Y are hydrogen atoms or alkyl groups, only d-P 7
backbonding from the metal is possible and is best represented by reso-
nance structure A. Finally, when X and Y are either aryl or alkene
groups, carbene bonding is most accurately described by a combination
of A and C.

Empirically, carbene complexes with séructures more closely re-

sembling C are more stable than those with structure A. Indeed, most

well-characterized and stable carbene complexes reported are p-7-

electron stabilized by X or Y groups containing N, 0 or S. In contrast,
few methylene complexes, MCHZ, have been cited in the literature and
17-21

they tend to be very unstable. In general, the stability of a

series of homologous complexes decreases in the order: NR2 > SR >
SeR > OR > aryl > alkyl > H.2*22

With few exceptions, the carbene ligand reacts as an electrophilic

center and is most accurately represented by resonance form B. That is,



an incoming nucelophile preferably attacks the empty Pz of the ccarb;

3

then, the Cca rehybridizes to an sp’ geometry affording the metal

rb

o-alkyl complex.

Explanation of Dissertation Format

The material in this dissertation is organized in two sections.
The numbering of literature references, figures, equations, tablgs,
schemes and appendices are applicable only to those contained within
that section, and the references are listed at the end of the text of
each section. Those literéture references cited in General Introduction

are summarized in Additional Literature Cited.



SECTION I. SYNTHESIS, STRUCTURE AND REACTIONS OF

19 ~ELECTRON (n?-CSHS)W(NO)Z(PR3) RADICALS



INTRODUCT I ON

There has been much interest in the reactions of metal

carbonyl ligands with nucleophiles such as amines and alkoxides,]
e.g.,

0
M-C=0' + OR% ———> M-cfi o

to give carbamoyl and alkoxycarbonyl complexes. While much is
known about transition metal nitrdsyl complexes,z-'6 there are in
contrast to the metal carbonyl situation, still relatively few

examples of alkoxide attack at nitrosyl ligands to yield alkyl

7-9

nitrite complexes,
0

(2)

+ - 7
M-N=0 + OR —m3787—> M-N\

OR

Such reactions appear to occur only in electron-poor complexes in

which the v(NO) frequency is greater than |850cm-1.8

Although the v(CO) frequency (2116cm of CpW(NO)Z(C0)+
indicates that this complex is sufficiently electron-poor to
promote nucleophilic attack at the carbonyl group, its reéctlons
with alkoxides and amines only yielded products resulting from the
displacement of the CO group. This result, together with others,]l
suggests that high v(C0) values not only indicate enhanced CO
susceptibility to nucleophilic attack but also weakened CO bonding

to the metal which makes CO displacement more likely.



To probe the possibility that nucleophiles would attack the NO
groups in this electron-poor system, we examined the reactions of
the phosphite-substituted complexes, pr(NO)Z[P(OR)3]+,lo where Cp
= nS-CSHE. In reactions with alkoxides, the'surprising result was
that no products resulting from nucleophilic attack on the NO were
identified, but instead only one-electron reduction products

CpW(NO)Z[P(OR)3] were isolated.
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EXPERIMENTAL

General Procedure

The complexes [CpW('NO)z(P(OR)3]PF6, and [pr(NO)z(PPh3)]PF6
were prepared as described in the literature.]0 The supporting
electrolyte [(ﬂ~Bu)AN]BFh for the electrochemical studies was prepared
by mixing [(H;Bu)hN]Br'and L48% aqueous HBFh in water, collecting the
precipitate by filtration,)recrystallizing it twice from acetone-
diethyl ether, and drying it in vacuum. Reagent-grade CHZCI2 was
stored over molecular sieves. Other chemicals were purchased from
commercial sources.

ESR spectra of solutions were obtained on a Varian E-3
spectrometer operating at 9.52 GHz. The solutions, prepared with
acetone deaerated by freeze-thawing, were studied in flat quartz cells
at -28°C under argon. ESR spectra of solids were measured on a
Bruker ER 220D SR at about 9.5 GHz at ambient temperature. I[nfrared
spectra were recorded on a Perkin-Elmer Model 231 spectrophotometer.

Hydrocarbon products were analyzed on a Varian 3700 FID gas
chromatograph equipped with a 1/8" x 6' 5% OV 101 column. Other
organic products were analyzed on a Varian 1700 TCD gas
chromatograph using a 1/4'" x 15' 10% DC550 column. Electrochemfcal
experiments were carried out on a Princeton Applied Research model
173 potentiostat and model 175 universal programmer. Cyclic

vol tammograms were obtained using a platinum disc working



il

electrode, a platinum wire counter electrode, and a saturated
(NaC1) calomel (SSCE) reference electrode. The solutions contained

3

approximately 1 x 10 °M complex and 0.1 M [(ﬂjBu)qN]BFh supporting

electrolyte; the scan rate was 20 mV/s.

Synthesis and Reactions

Reduction and oxidization

Synthesis of CpW(NO)z(L) by NaOR reduction A 0.035 g (0.66

Cl, under an N

mmq]) sample of NaOMe was suspended in 5 mL of CH2 2 2

atmosphere. Subsequehtiy, 0.10 g (0.13 mmol) of
[CpW(NO)z(P(OPh)S)]PFe was added to the solution. The green
mixture was stirred for 30 min. at room temperature. The solution
had then Become red-brown and was evaporated at 25°C under vacuum;
the residue was extracted twice with 15 mL of diethyl ether. The
solution was filtered through Celite under nitrogen pressure.
Pentane (10 mL) was added to the purple ether solution which was
then chilled to -20°C in a CCly-dry ice bath overnight.
Analytically pure purple crystals.of CpW(NO)Z(P(OPh)B) were
obtained'(O.OZSlg,ABI%). Anal. Calcd: C, b4.62; H, 3.23; N, L4.52.
Found: C, 44.57; H, 3.29; N, 4.58. |

The other coﬁpiexes CbW(NO)Z(PR3) were prepared by the same
method in similar yields, and were charadterized by their IR
spectra (Table 2). The CpW(NO)Z(PR3) complexes are very sensitive

to air and should be stored under argon at -ZOOC.
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A procedure similar to that used in the NaOMe reaction was
also used for the other alkoxide (NaOCHZPh, NaOEt, NaOCMe3 and

NaocH(CH ) reduction reactions.

302 |
Reduction of [CpW(NO)Z(L)]PF6 with NZHH'HZO A 0.10 g (0.13

mmol) sample of [CpW(NO)Z(P(OPh)3)]PF6 was dissolved in 5 mL of

CHZCI2 under an N, atmosphere. Subsequently, 17.5 pL(0.66 mmol) of

2
NZHQ'HZO (64% in HZO) was injected through a rubber septum into the
CHZCl2 solution. The greenish solution turned red within 1 min.,
and the solvent was removed under vacuum. Using the same work-up
employed in the previous synthesis, 0.053 g (65%) of ila was
obtained. Complexes |lb and llc were also obtained in good yields
utilizing this method (50-60%).

 Reduction of [CpW(NO)z(P(OPh)3)]PF6 with NaOH To a

suspension of crushed NaOH (0.40 g, 10 mmol) in 5 mL of CHZCI2
under an N, atmosphere was added 0.20 g (0.26 mmol) of
[CpW(NO)Z(P(OPh)3)]PF6 and 0.1 mL of degassed water. The mixture
was allowed to react at room temperature for 30 min. Following the
work-up procedure described\for the NaOR reduction, 0.042 g (26%)

of CpW(NO)z(P(OPh)3) was isolated.
Reduction of [CpW(NO)Z(P(OPh)3)]PF6 with Zn  Zinc dust (0.20

g, 3.1 mmol) was added to a solution of [CpW(NO)Z(P(OPh)3)]PF6
(0.05 g, 0.07 mmol) in 5 mL of THF. After stirring the mixture at
room temperature for 30 min, CpW(NO)z(P(OPh)3) was isolated as

given in the NaOR reduction procedure in 24% (0.01 g) yield.
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Reduction of [Cp(NO)ZW(P(OPh)3)]PF6 with PPN[Co(CO)k]

PPN[Co(CO)h](O.059,0.07 mmol) was added to a solution of
[Cp(NO)ZW(P(OPh)B]PF6 (0.05g,0.07 mmol) in 5 ml THF. A purple
solution was obtained instantly. The solvent was distilled into a
liquid-N2 trap and found to contain Co(CQENO (vide infra). The
remaining purple solid was extracted with Etzo to give a mixture of
Cp(NO)ZW(P(OPh)3).and an orange product. The orange product, which
could not be separated from the radical was identified by its 3]P
NMR and IR spectra to be Cp(NO)(CO)W(P(OPh)3), which was

synthesized independently in refluxing toluene solution of

Cp(NO)W(C0),, and P(OPh)B.lz
IR(CH,C1,) of Cp(NO) (COIW(P(OPh) ;) : 1926(s,v(C0)) , 1623 (s,v(NO);

3'p(cpc1,): 154.82(JwP = 716.9)

3)°

Reaction of CpW(NO)Z(P(OPh)B), lla, with [Ph3C]BF4 A 0.027 g

(0.044 mmol) sample of CpW(NO)Z(P(OPh)B) was dissolved in 2 mL of
CH,C1, under an N, atmosphere, and 0.015 g (0.046 mmol) of
[Ph3c]BF4 was added. The purple solution turned green immediately.
The solvent was removed under vacuum, and the green residue was
extracted with 6 mL of diethyl ether. The extract was filtered
through a glass fiber filter, and -the solvent was slowly evaporated

from the filtrate in air; a white precipitate was obtained. The
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solid was washed with acetone and dried under vacuum, leaving 0.002

g (13%) of PhBCOOCPh3 which was identified by its melting point:]3

and mass spectrum. The green residue was redissolved in CH2C12 and
was identified as la (88%) by the positions and intensities of its

v(NO) IR absorptions.

Reaction of lla with HSO3CF3 A 0.03 g (0.05 mmol) sample of

I1a was dissolved in 2 mL of CH,Cl, under N,, and L.h uL (0.071

mmol) of HSO3CF3 was injected into the solution. A green solution

was obtained immediately. It was diluted further with an

additional 4 mL of CHZCIZ; la (75%) was identified in the infrared

spectrum of the solution. The same procedure was employed in the

3503F. The CH3503F reaction

was complete within 1 min., and la (70%) was identified in solution

reaction of CpW(NO)z(P(OPh)B) with CH

by IR; the gas phase analyzed by GC contained ethane.

Reaction of lla with AgBFh A 0.03 g (0.05 mmol) sample of

lla was dissolved in 2 mL of CHZCI2 under N,, and 0.01 g (0.05
mmol) of AgBFu was added to the solution. The purple solution
became green within 1 min. The resulting solution was analyzed by
IR and contained 1a(80%).

Reaction of lla with l2 A 0.03 g (0.05 mmol) sample of Ila

——

was dissolved in 2 mL of CHZCI2 under NZ’ aﬁd a small crystal of l2
was added to the solution. The purple solution gradually turned
green in a period of 15 min. la and CpW(NO)zl were identified in

the reaction mixture by their infrared spectra. Stirring the
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solution for an additional 15 min resulted in the disappearance of

la and the increase of CpW(NO)ZI to about 75%.

X-Ray Data

~CoTlection and refinement

Crystal data CpW(NO)z(P(OPh)3), MW 618.58, monoclinic,’

P2,/n, a = 9.810(k), b = 14.450(7), ¢ = 15.45(1) A, B = 91.04(5)°,

v=2189.78, o | . =1.876 g/cm®, Z = 4 and 1 = 56.9 cm .

Data acquisition Autpmated Syntex P2l four-circle diffractometer;
MovKa (Av='0.71069.K); w-scan; 4170 reflections measured in almost
4 octants; ZQiSOO; Lorentz-polarization, absorption]h and decomposition
corrections applied; 2581 reflectiqns with |Z3°| after averaging;
agreement between equivalent reflections is 4%.

The title compound yielded purple plate-like crystais which
were readily indexed'using 12 independent reflections and an

IS. Appreciable (approximately 10%) and

automatic indexing procedure
accelerating decay was noted approximately midway through data
collection; thereforé, a second crystal was mounted and used for the
latter part of data coflection and the two data sets scaled to a
common basis. The standard héavy atom technidue was used-For

| structural solution, and a combinafion of block mqtrix-fujl matrix

16

least-squares refinement -~ of all non-hydrogen atoms converged to

conventional and weighted residuals of R = 0.061 and R, = 0.067,

17

respectively. The scattering fac;ors were modified for

anomalous dispersion efi’ects'8 and hydrogens were included but not



refined. The bond distances, angles (Table 1); atom positions
(Appendix 1); thermal parameters (Appendix 2) and structural factors

(Appendix 3) are listed.
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RESULTS AND DISCUSSION

Synthesis

Radical

+
Reduction of CpW(NO)Z(L) If the NO groups are each considered

+
3-electron donors, the pr(NO)z(L) complexes are 18-electron
systems. They react with a variety of reducing agents to give

(Eqn. 3) the 19-electron compiexes CpW(NO)Z(L).

con (o), (1) —LS2UEIng - cpy (o), (L)

agent
(3)
la=c {la-c
L= P(OPh)3(Ia), PPh3(Ib), P(0Me)3(|c)
reducing agents = OR , OH , NZHh'HZO’ Zn
+ -
CpW(NO)z(P(OPh)3) + Co(CO)h —_— pr(NO)Z(P(OPh)3)
+
CpW(NO)CO(P(OPh)3)
+
Co(No)(co)3
(4)
The reaction of CpW(NO)z(P(OPh)3)+, la, with excess NaOMe in CHZCI2

produces a purple solution from which an air- and heat-sensitive
purple compound (lla) is isolated in 31% yield. In air, lla
decomposes in solution within 30 minutes. Even in the solid state

under argon at -20°C, it shows evidence of decomposition within



15 days

The same purple compound is isolated from reactions of la with
PhCH,0", i-Pr0", t-Bu0, Etb', and OH . The mechanism of these
reductions is not known, but the alkoxide may act as a one-electron
donor giving RO és the inftial product. Subsequently, the g-H or
-‘alkyl groﬁp of RO-.could be lost.or abstracted by another.RO- to
give the corresponding aldehyde or ketone and alcoholl9. In
support of this.poséibi]ity is tHe GC detection of PhCHO and
PHCHZQH as products of the reaction of la with PhCHZO_, The
complexes, CpW(NO)z(PPh3)+, ib, and CpW(NO)z(P(OMe)3)+, lc, are also
reduced to give similar yields of Ilb and llc, but these products
are much less'stable thermally and to air than lla. Due to their
instability, they Were 6nly characterized by their spectra and
e1ectrochemistry.

A still better reducing agent is hydrazine hydrate, NZHM.HZO’
which converts la to lla in 65% yield. This is also the more
effective reducing agent for the preparatfons of 1lb and llc.
Powdered Zn reduces la, bﬁt the reaction is much slower (v 30 min.)
and decomposition of the product lla greatly reducgs the yield.
Finally, PPN(Co(CO)h) also reduces la to Ila; though, Co(C0)3N0
andepW(NO)(CO)(P(OPh)3) are also produced (Eqn. 4).

Structure of CpW(NO).(P(OPh),) Although the spectroscopic
2 3

properties of the CpW(NO)Z(L) compounds are consistent with a
mononuclear complex, there was some question whether these

19-electron compounds might be dimers, especially in the solid state.
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To examine this possibility, as well as to determine whether the
added electron causes the expected linear NO in pr(NO)Z(L)+ to
bend in the neutral complex, an X-ray structural investigation of
CpW(NO)Z(P(OPh)3), Ila, was performed.

As shown in the ORTEP drawing (Fig. 1) of Ila, the complex is
clearly monqnuclear with a 3-legged piano-stool strdcture. There
are no unusually short distances betwéen molecules which would
suggest intermolecular interactions. Bond distances and angles are
given in Table 1. Within experimental error, the W-C cyclopentadienyl
distances are equal, and the C-C distances in the ring are equal
237Ci9 distance
(1.463) is somewhat longer than the average (I.QOR). Both the W-C

within approximately 3 standard deviations, yet the.(

and C-C distances of the Cp ring in lla are comparable to those in
the 18-electron complex CpW(NO)ZCl.20
If one assumes that the 18-electron CpW(NO)z(P(OPh)3)+ comp lex
has a sfructure very similar to that of structurally characterized
CpW(Nb)ZCI, then any deviation Fn the structure of lla from
CpW(NO)ZCI might be attributed to effects of the extra electron in
lla. The major differences Between lla and CpW(NO)ZCI occur in the
“distances and angles associated wjth the NO Ifgands; these are
shown in Fig. 2. There is much discussion in the literature2-7’2]
about the influence of electron dehsity on M-N-0 bond angles in

metal nitrosyl complexes. In some systems, additional electron-

density provided to the complex causes-a linear M-N-0 bond to
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Figure 1. ORTEP Drawing of CpW(NO)Z(P(OPh)3), la

o¢



21

Table 1. Interatomic distances (R) and bond angles and their
estimated standard deviations (in parentheses) for
CpW(NO)ZP(OPh)3 ‘

A. Bond distances

W-P 2.386(4) 02-07 1.5 Q1)
W-N1 1.78(1) 03-C13 1.39(1)
W-N2 1.80(1) c1-c2 1.39(2)
W-C19 2.30(2) - €2-C3 1.37(3)
W-C20 2.32(2) C3-Ch 1.37(3)
w-c21 2.33(2) ch-C5 1.39(3)
W-C22 2.34(1) c5-C6 1.37(2)
W-C23 2.32(2) c6-C1 1.37(2)
N1-0k . 1.22(2) c7-c8 1.36(2)
N2-05 1.20(2) c8-C9 1.39(2)
p-01 1.58(1) €9-C10 1.36(2)
P-02 1.59(1) c10-C11 1.41(2)
P-03 1.58(1) cli-ci2 1.41(2)
C19-C20 1.35(3) cl2-c7 1.35(2)
c20-C21 1.38(3) C13-Clh 1.41(2)
c21-C22 1.39(3) Cl4-c15 1.46(2)
€22-C23 1.41(2) Cl15-C16 1.40(3)
c23-C19 1.46(3) clé6-c17 1.33(3)

o1-cl  1.43(2) cl7-c18 1.43(2)

c18-Cc13 1.33(2)



Table 1.

continued
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B.

Bond angles

W-N]-Oﬁ
W-N2-05
N1-W-N2

P-W-N1

" P-W-N2

W-P-01
W-P-02
W-P-03
01-P-03
01-P-02
02-P-03
01-C1-C6

01-C1-C2

. C1-C2-C3

C2-C3-Ch
C3-Ch-C5
Ch-C5-C6
C5-C6-C]
C6-Cl1-C2

02-C7-C8

174.9(1.2)

165.7(1.3)

102.7(6)
89.0(4)
91.0(5)
119.0(4)
119.4(4)
113.7(4)
104.0(6)
98.2(6)

 99.2(6)

120(1)
117(1)
118(1)
120(1)
118(1)
121(1)
ll8())

121(1)

119(1)

02-C7-C12
c7-C8-¢9
c8-c9-C10
€9-c10-C11
clo-c11-ci2
Cl11-C12-C7
C12-c7-c8
03-C13-Cl4
03-C13-C18
C13-Cl4-C15
Cl14-C15-C16
¢15-C16-C17
Cl6-C17-Cc18

C17-C18-C13

C18-C13-Cl4

C19-C20-C21

€20-C21-C22

C21-C22-C23

C22-C23-C19

€C23-C19-C20

17(1)
119(1)
119(1)
121(1)
117(1)
119(1)
123(1)
114(1)
120(1)
116(1)
17(1)
121 (1)
122(1)
116(1)
124(1)

111(2)

- 105(1)

11(1)
103(1)
108(1)




23

1.20(2) 1501)
165.7(1.3) 168.4(8)
1.80(1) 1.832(9)
102.7(6) 92.0(4)
1.819(8)
1.78(1)

169.0(1.0) |

174.9(1.2) 1.17(1)

1.22(2)

CpW(NO),(P(OPh),) CpW(NOLCI

Figure 2. Bond distances and angles associated with the NO

groups in CpW(NO)Z(P(OPh)3) and CpW(NO)ZCl
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become bent, even up to 1200. As seen in Figure 2, there is
little difference in the average W-N-0 bond angles between
CPW(NO) ,C1 (168.7° average) and Cp(NO),(P(OPh) ;) (170.3° average),
al though there is a greater variation between the two angles in Ila
than in CpW(NO)Zci. Differences appear more evident in the W-N-0
distances, althoqgh standard deviations are foo large to prevent
their unequivocal interbretation. In the 19-electron 1la, the W-N
distances (1.79 A average) are shorter than those in CpW(NO),CI
(1.825 R aQerage), while the N-0 distances in lla (I.ZI-R average)
are longer than in CpW(NO)ZCl (1.16 R average). The major
difference in structure_is the substantially‘lérger N-W-N angle in
ita (102.7%) as compared to that in CpW(NO)ZCl (92.09).

These structural differences in the 18- and 19-electron
complexes may be readily understood in terms of a recent molecular
orbital calculation22 for complexes of the type,.CpM(Noax, where
'M=Cr, W and X=Cl1, Br, |I. The lowest unoccupiéd MO (13a' in Fig. 2
§f referencé 22) of CpCr(NO)ZCI, which is separated from higher
energy MOs and woula accept the 19th electron, has 89% NO 2m
character and is antibonding between the two NO ligands and
antibonding Between the N and 0 atoms of each NO ligand23. Thus,
occupation of this level would lead to an increase in the N-W-N
bond angle and an increase in the N~0 bond distances, which are
the obgerQed major struétural differences between Ila and

CpW(NO)ZCI. Although 13a'" is 89% NO 2« character23, the
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lengthening of the NO bond distance lowers the energy of the 27
_orbital, thereby increasing the W-N m-bonding. This effect is
reflected in the shorter W-N bond distance.

Infrared and ESR spectra and electrochemistry of the

CpW(NO)Z(L) complexes The v(NO) frequencies in the infrared region

of la (1788,1712cm—i) are 160-175 cm_] higher than those
(1613;T553cm-]) in the 19-electron reduced complex lla. Similar
changes in v(NO) values in complexes Ib and Ic are also observed
(Table‘Z). These decreases of v(NO) values upon one-electron
reduction are substaﬁtially larger than those observed (50cm-])
in the pair Fe(NO)(das)2+2(l760cm_]) and Fe(NO)(das)2+(l710cm-]),
- which ére 17- and 18-electron species, respectively (daszo-phenylenebis
dimethYIarsine)ZA. Much larger decreases (V300 cm-l) in V(NO) are
observed upon reduction of lS-electron complexes such as
Ru(bipy)z(NO)Cl2+ (l9h0cm-l) to 19-electron Ru(bipy)z(NO)Cl+
(l6h0cm_]).25’26_ These IR and other studies Qere interpreted to
indicate that the édditiona\ electron in the 19-electron ruthenium
complex is priharily localized on the NO group. In the present
CpW(NO)Z(L) complexés, the l60-l75cm-] shift in v(NO) suggests that
the additional electron is substantially on ;he two NO ligands, as
was also inferred from the X-ray structural results.

ESR spectra of lla and |Ib in acetone solution at -28°C show
a tenline pattern with approximate peak intensities of

1:1:2:2:3:3:2:2:1:1: (Fig. 3). This pattern results from hyperfine



26

Table 2. IR and ESR data for | and 11

[Cow (NO) , (P(OCH,) J) IPF

CpW(NO)ZP(OCH3)3

1777(s), 1702(vs)

1605(s), 1533(vs)

Complex v(NO)a,CM_‘ EPR datab
[cpW (NO) , (P (OPh) ;) 1PF, 1788(s), 1712(vs)
cPW(No)Z(P(OPh)3) 1613(s), 1553(s) =7.0g, a,=5.0¢°
.[CPW(NO)Z(P(Ph)3)]PF6 1770(vs), 1690(s)
CoU(NO), (P(Ph) ) 1595(s), 1526(vs) =7.0g, a, = b.b ¢°

a -
Solvent is CHZCIZ.

b_Solyent is acetone, temperature is -289.

“The g value is 2.02, obtained at room temperature in the
solid state with DPPH as the internal reference.

dDecomposed too rapidly for ESR measurement.
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Figure 3. ESR Spectrum of pr(NO)z(PPhB) in acetone at -28°¢
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Table 3. Reduction potentials for the [CpW(NO). L]PF complexesa
} 2 6

Complexesb ' EI/Z(I),V EI/2(2)’V
[pr(NO)Z(P(OPh)3)]PF6 -0.09 -1.58
[CpW(No)z(|>(ocs+3)3)]PF6 -0.16 -1.60
[pr(NO)Z(P(Ph)3)]PF6 -0.18 -1.68

3carried out in CH.C1, (0.1 M [BuhN]BFh) solution using a scan
rate of 20 mV/s. The poteritials are measured against a SSCE
reference electrode.

3

bConcentrations of the complexes are 1 x 10 °M.
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coupling of the unpaired electron with the two equivalent ‘hN(|=l)

and 3]P(I=1/2) nuclei. Coupling constants to ]hN are 7.0 g in both
31

lla and |1lb; the coupling éonstant to ”' P is 5.0 g in Ila and 4.4 ¢

in Iib. Both compounds in the solid state have g values of 2.02

(Table 2).

ESR spectra of two other 19-electron dinitrosyl species,

Fe(CO)Z(NO)Z- and Co(N0)2(C0)2,27’28 generated in situ by

irradiation, were interpreted to indicate that the unpaired electron
is largely confined to the NO ligands. |t appears therefore that

the addition of another electron to an 18-electron dinitrosyl complex
occurs predominantly into the NO ligands.

Reduction potentials of the CpW(NO)Z(L)+ complexes in CHZCI2
solution were determined by cyclic voltammetry (Table 3). All
complexes undergo reduction in two steps. The first wave is
quasi-reversible and occurs at -0.09 to -0.18V. The small potentials
for these reductions account for fhe easy chemical reductions of
I"to Il. The second wave is non-reversible showing no corresponding
oxidation peak on the reverse scan (Figure 4). Although the
product of the second reduction step is not clear, a possible species
is the 20-electron anion CpW(NO)z(L)-. An attempt to prepare this
anion of lla in THF solution was made by reduction of Illa with 3%
sodium-amalgam. This reaction yielded only a clear solution which

showed no v(NO) absorptions. Both the first and second reduction



0.5

0.0 <0.5 -1.0 -1.5 -2.0

Figure 4. Cyclic voltammogram of CpW(NO)z(PPh3) in CH
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potentials become more negative with changes in L in the order:

P(OPh)3>P(0Me)3>PPh This is also the order of decreasing

3°
T-acceptor/oc-donor ratios for these ligands, which is consistent
with the most strongly electron-withdrawing phosphorus ligands

giving the most easily reduced species.

Reactions of CpW(NO)z(P(OPh)B) The CpW(NO)Z(P(OPh)3) complex

(11a) is easily oxidized to the cation CpW(NO)Z(P(OPh)3)+ (1a) by

a variety of oxidizing agents:

HZ(?) + CpW(NO)ZCI 4 | + la >pr(N0_)2l
\\“cl |
2 +
CF3S0,H Ag
Hz(?) + la lla , la+Ag
+
Me0S0,F \h3c
' v A 0,
CH + la la + PhyC: > Ph,C00CPh,

The purple CHZCI2 solution of lla becomes the characteristic green

of la within one minute upon treatment with AgBFh. Oxidation of

Ila by Ph3C+BFh- occurs immediately; the organic product,
Ph3C00CPh3, is isolated in 13% yield, presumably formed from Ph3C-
13

during work up of the reaction mixture in air -,
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The reaction of lla with CHSOSOZF is comple;e within one minute
and yields la and the reduction product ethane, which was detected
by gas chromatography. An immediate reaction occurs between lla

and CF3503H to give 75% la; the other product is presumably H2.

When HC1 gas is slowly bubbled into a CH2C12 solution of lla,
CpW(NO)ZCl is the only NO-containing product identified by IR in the
reaction solution. The formation of CpW(NO)ZCl presumably occu?s
by Cl~ substitution of P(OPh)3 in la generated by acid oxidation.
When I2 is added to a CH2C12 solution of |la, the purple solution
gradually turns greeﬁ over a 15 minute period; at this stage both
la and CpW(NO)Zl are present. On standing 15 additional minutes,
only CpW(NO)ZI is present in 75% yield; presumably la is converted
to the iodo complex by substitution of the P(OPh)3 in la.

To examine the possibility that the CpW(NO)Z(P(OPh)3) radical

initiates the polymerization of styrene, Ila was added to a

CHZCI2 solution of styrene; no reaction occurred.
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APPENDIX 1. FINAL POSITIONAL PARAMETERS AND THEIR

ESTIMATED STANDARD DEVIATIONS (IN PARENTHESES)a FOR Cp(NO)z\rJP(OPh)3

Atom X Y z

W 0.5938(0) 0.3837(0) 0.5978(0)
p 0.2921 (k) 0.7621(2) 0.3960(2)
o1 0.3164(11) 0.8282(7) 0.3157(6)
02 0.1291(11) 0.7650(7) 0.3953(6)
03 0.3220(12) 0.8259(7) 0.4775(7)
04 0.6328(14) 0.7000(8) 0.5099(9)
05 0.2052(15) 0.5200(10) 0.5199(9)
N1 0.5362(14) 0.6679(8) 0.4685(9)
N2 0.2875(18) 0.5739(10) 0.4803(9)
cl 0.4383(17) 0.8242(9) 0.2662(11)
c2 0.4243(21) 0.8155(12) 0.1765(11)
c3 0.5399(25) 0.8104(13) 0.1275(11)
Ch 0.6675(22) 0.8174(14) 0.1657(14)
c5 0.6779(21) 0.8291(13) 0.2555(14)
cé 0.5642(19) 0.8314(11) 0.3064(12)
c7 0.0543(14) 0.7092(10) 0.3363(10)
c8 0.0393(19) 0.7370(12) 0.2526(11)

c9 ~0.0287(20) 0.6794(14) 0.1938(12)

3positional parameters are listed in fractional unit cell
.coordinates.
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Atom X Y z
clo ~0.0801(20) 0.5967(14) .2214(12)
cll -0.0697(21) 0.5700(14) .3091(12)
12 0.0067(16) 0.6276(12) .3659(10)
13 0.2731(17) 0.9155(10) .4898(10)
Clh 0.1688(19) 0.9229(11) .5513(12)
c15 0.1206(2k4) 1.0162(16) .5711(12)
16 0.1832(25) 1.0907(12) .5298(14)
C17 0.2806(25) 1.0774(12) 4716(14)
18 0.3333(21) 0.9873(12) -4515(12)
c19 0.4420(29) 0.4713(14) .3443(12)
€20 0.5555(25) 0.5213(17) .3283(15)
c21 0.5261(26) 0.5952(14) L2781 (1h)
22 0.3876(23) 0.5877(13) .2528(10)
c23 0.3275(22) 0.5132(15) .2972(14)
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Atom X Y z
H, 0.3260 0.8107 1458
H, 0.5303 0.8024 .0596
Hy, 0.7565 0.8139 1272
He 0.7751 0.8354 .2865
H6 0.5735 0.8406 .3758
Hg 0.0783 0.8002 .2309
H9 -0.0402 0.6995 .1287
Hyg -0.1329 0.5535 1777
Hy | -0.1094 0.5068 .3308
Hy, 0.0182 0.6075 .4309
Hyy, 0.1242 0.8657 .5816
His 0.0427 1.103 .6160
Hig 0.1477 1.116 .5446
Hy 0.3252 1.113 43
Hig 0.4111 0.9780 .4065
Hig 0.4350 0.4152 .3863
Hao 0.6544 0.5061 .3514
Hy\ 0.5971 0.6437 .2519
Hyp 0.3335 0.6356 .2113
H 0.2248 0.4899 .2944



38

APPENDIX 2. FINAL THERMAL PARAMETERS (x 10'“) AND THEIR
ESTIMATED STANDARD DEVIATIONS (IN PARENTHESES)

FOR Cp(NO) 2WP (oPh) 3 '

By By B33 B2 B3 B3
W 99(0)  25(0) 23(0) 0(0) - 6(0) 0(0)
P 89(5)  26(2) 22(1) - 3(2) - 9(2) - 1(1)
01 97(15) 34(6) 25(5) 17(7) -12(7) 6(4)
02 109(15) 36(5) 29(%4) - 3(8) 1(7) ~11(4)
03 121(17)  31(6) 35(5) 10(8) -20(8) - 3(W)

ok 139(20) 46(7) 76(9) -16(10)  -49(11) - 4(6)
05 149(21) 75(10)  55(7) -19(12) 6(10) 14(7)

NI 105(19) 22(6)  44(7) - 8(9) - K(9) 1(5)
N2 157(23) 38(8)  28(6) 6(12) - 5(10) - 4(6)
cl 83(22) 16(7) 41(8) 5(10) 21(11) 7(6)
c2 150(30) 35(9) 32(8) 6(13) -14(13) 3(7)
c3  196(36) 51(11)  28(8) 3(16)  24(15)  5(8)

ch  119(28) s51(12) 60(12)  17(15)  14(15) 0(9)
c5 112(28) 47(10) 53(11) - 8(1L) 0(14) 6(8)
Cé 82(23) 30(9) 45(9) - 1(1) 0(12) 3(7)
7 37(17) 30(8)  4h(8) 17(10) 3(9)  -12(6)
c8 136(27) 46(9)  31(8) 23(13)  -21(12) 6(7)
C9 103(26) 68(14)  35(9) 12(15) - 9(12) 0(9)
10 99(26) 80(15) H1(9) - 2(15) -23(12) - 1(9)
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®id not refine anisotropically.

B B2 B33 B2 B3 B3
cn 140(30)  60(12)  46(10) -24(16) -22(14) 2(9)
12 |
Cl3 63(21) 30(8_)‘ 34(7) k(10) -15(10) -11(6)
Clh 101(25)  28(8) 50(9) 19(11) -18(13)  -11(7)
15 193(38) 70015 35(9)  3(20).  -19015)  -12(9)
c16 169(33)  28(10) 55(11) 8(14) -29(16) - 8(8)
ci7 196(36) 34(9) 52(11) -27(15) - 3(17)  -11(8)
18 159(30)  32(9)  51(10) -11(1h) - 5(14)  -15(8)
Cl9  212(41)  48(12)  36(9)  34(20) 4(16) - 2(8)
€20 127(32)  63(15)  59(13) 35(18) -19(17) - 5(12)
c21 188(37) 53(14)  51(11) - 7(17) 7016)  -24(10)
c22 158(32) 52(11)  24(7) 6(15) 2(12) - 7(7)
c23  158(35) 71014 61(12) -64(19)  32017)  -37(11)
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APPENDIX 3. STRUCTURAL

FACTORS FOR Cp(NO) 2w(|>(m‘—~h)3)
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SECTION 11. THE CHEMISTRY OF THIOMETHOXYL

AND AMINO SECONDARY CARBEWE COMPLEXES OF IRON
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INTRODUCTION

In view of fhe projected shortage of crude oil, which is
currently the primary feed stock for various organic coﬁpoundé,
_interest in the Fischéf-Tropsch reaction as an alternative source
of organics has revived. The Fischer-Tropsch reaction converts a
mixture of H2 and CO gases, when passed through a hot bed of
‘catalyst, composed of transition metals on a solid support, under
high pressure conditions, into hydrocarbons and oxygenated organic

molecules (Eqn. 1).

-

Co + H JEEEE!—> alkanes, alkenes, alcohols ... (1)
2 A

The mechanism(s) of this reaction remains elusive but most of the
transformations are believed to take place on the activated metal

v‘surfaces;.metal coordinated CI, CHOZ, CH,, CH0H3, CH,O0H are among

the plausible fransient species -6. Current advances in the
‘'syntheses of thesé organometallic intermediates undoubtedly would
shed.some'lfght on the mystery of this catalytic reaction.
Most recently, the chemistry of isolated primary cérbene
complexeé‘has been explored. Schrock and coworkers showed that sz

‘TaMe(CH2)7 disproportionates thermally to give the

mefallacyclopropane (Eqn. 2). Brookhart et al.8, demonstrated that
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deppeFeCH2+, which only can be generated in-situ, transfers the

methylene moiety to olefins affording ¢yclopropanated products

(Eqn. 3).
TaCH, ( LI H (2)
20p,TaCH, (CH,) —————> Cp,TaCH,CH,
™ +
cp(dppe) FeCH)0CH; —— [Cp(dppe) FeCH, ] (3)
\& 2 +
Cp(dppe)Fe(n"~C,H,)

Due to its inherently unstable nature, the iron complex decomposes
to the n2 olefin complex, Cp(dppe)Fe(CZHl‘)+ (Eqn. 3). The reaction
turns out to be a general pathway for the decomposition of other
methylene compounds. Thus, CbM(CO)z(PPhB)(CZH‘*)+ (M = W,Mo) is

formed when the methylene complex is heated” (Eqn. &4).

MrcH, " —S——> M (e H,)” )

M = CpMo(CO)ZPPh CpW(CO)zPPh

3’ 3

To enhance the stability of methylene complexes, CO ligands
are commonly replaced with electron-donating ligands, such as

‘tertiary phosphines. Alternatively, replacement of one of the
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carbene hydrogen atoms with an electron-donating group results in a
secondary carbene complex which is often strikingly more stable.
10-22, xyl'9’23-25 19,26-28 Sily]29-3]’

Thus far, amino , thioalkoxyl ,
ry]9,3l,42-46

30,32-33,34-11

(o]

alkyl and a carbene complexes have been
successfully produced. Collectively, the first three types are often
referred to as Fischer-type carbenes whereas the latter three are de-

noted as alkylidene complexes.

Synthesis

Methods for the preparations of secondary carbene complexes
are very specific, and may be classified into five categories:
acid-assisted elimination, base-assisted elimination, nucleophilic

substitution, ﬁfotonation and alkylation, and hydride addition.

Acid-assisted elimination

Bronsted and Lewis acid-promoted eliminations are the most
common synthetic schemes for prepafing secondary carbene compounds.
McCormick and Angelici27 utilized this method in preparing

{Cp(CO)ZFe[CH(SMe)}CF3503 by expelling MeSH from Cp(CO)ZFeCH(SMe)2

With CF;S0.H (Ean. 5).

SMe  HOSO,CF, /SMe

. [cp(co),Fe = ¢ ] CF,S0

Et20 . H

" +  MeSH (5)

Cp(C0),,Fe—C—SMe 3
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+ QS’ (CO)SW(CHPh)43 and a few other

Similarly, Cp(CO)ZFe(CHPh)
benzylidene complexes were obtained from the reactions of acids

with the corresponding metal ether precursors (Eqn. 6)

///ph H
M—c—H o+ HOSOCFs o @ 4 MeoH (6)
—_—
OMe ph

M= Cp(co)zFe; (co)sw

By far the most versatile, but often non-selective, lewis acid for
this transformation is the trityl cation, Ph3c+. This cation has
been successfully employed in the preparation of
Cp(CO)(L)Fe[CH(OR)j+ 2k by means of hydride abstraction from

Cp(CO)(L)FeCHZOR (Eqn. 7).

Cp(CO)(L)FeCHZOR + (Ph3C)PF6""’°{Cp(CO)(L)Fe[CH(OR)]}PF6

+

HCPh3 (7)

-
I

= CO, PPh3

=
|

= Me, Et

Likewise, [Cp(NO)(PPhB)Re(CHPh)]+ h2 was isolated from the reaction

of the benzyl precusor with trityl cation. This reagent is not



limited to hydride removal; abstraction of methoxide ion from a
metal ether complex also occurs under the proper conditions. Such’
process was observed in the reaction of Cp(CO)zFe[CH(Ph)(OMe)] and

trityl, affording [Cp(CO)ZFe(CHPh)]PF6L'5 (Eqn. 8)

OMe

Cp(C0),Fe—C—H + (CPh,)PF +[Cp(CO),Fe(CHPR)IPF.-  (8)

Ph

Base-assisted elimination

Elimination with base is a relatively rare reaction in
organometallic chemistry. A few Ta and NB neopentyl complexes have
been observed to undergo a-proton elimination in the presence of a
Grignard reagent. Schrock et al., accidently prepared
((Me) ;CCH,) sTaCHC (Me) .7 by reacting C1,Ta (CH,C (Me;)) ; with
LiCHZCMe3. Presumably, the reaction proceeded through the

pentaneopentyl tantalum complex; a-hydrogen abstraction from one of

the ligands afforded the observed secondary carbene (Eqn. 9).
ClzTa(CHzR)3 + ZLICHZR'*[Ta(CHZR)S] - RCH3 + (RCHZ)BTaCHR

(9

R = t-Bu
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It was suggested that the high acidity of the a-hydrogen is
faciliated by steric crowding about the metal. Since this initial
success, serieé of Nb and Ta alkylidenes have been synthesized in a

similar fashionhq

Nucleophilic substitution

A number of amino hydride carbenes have Been obtained from the
reaction of iminyl chloride with organometallic nucleophiles.
Lappert et al., showed that the oxidative addition of N,N
diméthylchlorométhyl enamine chloride, (MeZNCHCI)CI, to (PEt3)3RhCI

resulted in the formation of (PEt RhClB(CHNMeZ)IB. Analogously,

other ﬁhlz 14 14

3)2

, Ptl3, Ru" " and Ir ~ secondary amino carbene complexes

have been prepared (Eqn. 10).

(PEt3?3RhCl + [MeZNCHCI]CI -9-(PEt3)2Cl3Rh(CHNMe2) (10)
‘ +

PEt

2-10,14

The metal carbohyl anions, Cr(CO)sz- and Fe(CO)h , also

react with the iminium chloride to yield amino carbenes (Egn. 11).
Secondary'éarbene complexes of Mn, Re, V, Cr, Mo, W, Co have been

synthesized by this method]h.
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MZ- + (MezNCHX)CI————————o MCHNMe2 1)
M= cf(co)s, Fe(co)h; X = H, Cl, SMe
Despite these successes.in generating secondary amino carbenes,
this novel method has not been extended to the preparations of

other classes of carbenes.

Protonation and alkylation

Conversion of metalacyls to the analogous carbene complexes

simply by alkylation marked a milestone in organometallic

chemistryh7-48. Due to the instability of M[C(OH)R], the parallel

protonation reaction is rarely citedu7-h8. Gladysz et al., showed
that Cp(NO)-PPhBRe[CH(OH)]+ 23 may be prepared by the protonation of

the formyl! complex (Eqn. i2)

ont
Cp(NO) PPh,CHO + Hf— Cp(NO) PPh,Re = (12)
' H
Similarly, a number of iminoyl formyls (Rhls-‘6, 0519, Ptll’]a,

accept a proton to give carbenes as indicated in Egn. 13.
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trans(PPh,),(C0),(C1)0s(CHNMe) + T

\ (13)

'(co)z(CI)Os(CHNHMe)+

3)2

-trans(PPh3)2

Protonation of an n'-cyclopropyl metal complex produced an ethyl
secondary carbene compound (Eqn. 14). However, this complex
underwent facile hydrogen rearrangement to give the nz-prOpene

3k

derivative

cp(co)zre(cncnéknz) +HY — 5 cp(co),Fe(cHEn)
// o (14)
, 1/
Cp(C0).Fe(n2-H.C=CHCH, )"
PR¥%2 2v=" 3

Collins and Roper]9 found that a formyl complex,

(PPhB)Z(CO)L(Cl)Os(CHO) when alkylated with CF,S0.Me yielded the

3773

corresponding air stable carbene compound

{(PPh3)2(CO)L(CI)Os[CH(OMe)]}CF3SO3 (Eqn. 15).
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: (PPh3)2(C0)L(CI)Os(CHX) + CF5S0Me

\ | (15)

+
{(PPh3)2C0(L)(Cl)Os[CH(XMe)]} cr3so3

X=0,§

L = (p-tolyl)NC

Analogously, the first sulfur sfabilized secondary carbene,

{(PPh3)2(C0)L(Cl)Os[CH(SMe)]}CF3SO was obtained (Eqn. 15).

3

‘Hydride addition

Hydride attack on metal-coordinated carbynes leading to the
production of secondary alkyl carbene complexes was initially dis~-
' ' : + .
covered by Fischer and Frankq6, thus, Cp(CO)zReCPh was reduced with

EtAlH2 to afford Cp(CO)zRe(CHPh) (Egn.. 16).

Ph
Cp(C0) Re = cPh + EtAIH, —2Cp(C0) ,Re=C (16)

H

This @-hydride addition technique has also been successfully employed

in the synthesis of an amino carbene22 (Egn. 17).

(C0)5M0=C=N + LiAlH4~——€>(CO)5Mo=C _ ' (17)

Me ‘ NHMe
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The above method is a useful technique.for obtaining otherwise
inaccessible secondary carbene complexes. However, the
unavailability of suitablé carbyne complexes has reduced the
applitability of this approach.

In contrast to carbynes, isocyanide complexes are relatively
_abundant. Treichel et a1.'7 found that a number of di and
tri-isocyanide cdmpounds reacted with bordhydride to give

boro~heterocyclic metal carbene complexes (ths. 18 and 19).

Cp(cO) Fe(CNMe) ! + BH > Cp(CO)Fe (CHNMe) BH (18)
2 4 2°%

Cp(Fe(CNMe); + BHA' > CpFe(CHNMe)BBH (19)

25

Quite recently””, metal carbonyls of group VI transition
metals and Nb have been found to be susceptible to reduction with

organometallic hydrides, giving oxo-carbene complexes (Eqn. 20).

Cp,MCO + (MeBCS)ZZrHZ > szM[CH(OZrH(MeBCs)z)] (20)

M =W, Mo, Cr, Nb(H)
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Miscellaneous

A number of interesting secondary carbene preparations which

do not fit into the previous discussions are summarized in Table 1.

Table 1. Other secondary carbene preparations

Reaction Reference

Ta(CHR) (PEt

, 3)2(:13 + (6R)hwo -+ Ta(OR)“cl + c12(P5t3)2(o)w(cHR) 38
R = t-Bu '

[(PPh3)Cll’rtCHzN(Me)ZCHzﬁ(Mé)Z]CI ——é—> c12(PPh3)PtCHN(Me)2 20

(Cp(NO)PPh3ReCH2)ZSMe+ -fi-;>cp(No)Pph3ReMe +
[Cp(NO)PPh3ReCHSMe]+ 26
MClg + LiCH,SiMe s (Me3SiCH2)3(MCHSiMe3) a 29
CpZZrMe(nzMeCHO) + Cp WH,——> CpZW(CHMe) + CpZZr(OH) (Me) I
TPPFeC1, + PhSCHCI, + Fe° > TPPFe (CHSPh) | 28
CpRe(ﬁO)PPhB(CszMga) + Mef—> CpRe (NO) PPh3[CH(0Mé) " ‘ 23
CpMo(CO)jCHZOMé ; Ph3c+;-;>cpMo(co)3Me + CpMo(C0)3[CH(0Me)]+ 9

ot fully characterized.
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Chemical Properties

The chemistry of mefal-coordinated carbon ligands is rich and
varied. Most of the chemical reactivity studies are on alkyl

carbene, alkylidene, complexes. By and large, alkylidenes undergo

k9

carbene ligand transfer to olefins to give cyclopropane products ~,

as exemplified in the reaction of Cp(CO)zFe(CHPh)+ and propene"5

(Eqn. 21).

Cp(CO)zFeCHPh+ + HyC=CHMe > PhCHCH, CHMe (21)

2

Dimerization of carbene ligands leading to olefins is frequently

observedl‘B"’5 (Egn. 22).

cp(c0) ,Fe(CHPh)” > PhCH=CHPh (cis and trans) (22)
Similar reactions have also been found in methylidene complexes,
although the conditions are milder than those in Eqns. 21-and 22
due to more favorable steric and electronic considerations. Such
similarity has encouraged catalytic studies on alkylidenes.

Several alkylidenes have been discovered to be catalytically active
in promoting olefin metathesisBs’ho. In this reaction, the olefin
and carbene groups are presumed to unite to form a puckered

43

metallocyclobutane intermediate -, subsequent scission results in

overall alkyl exchange38 (Eqn. 23)
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C]Z(PEtB)ZW(O)(CHR)+ 2-pentene + AlCl3
(23)
A - ]
ct. (PEt,) W(0) (CHR') + RCH=CHR
2 3°2
— R=t-Bu
R'=Me, Et

Schrock found that the highly polarized metal carbene bond of

(RCH,) ,Ta(CHR) may be regarded as being similar to a Wittig

2)3
" reagent; as in the Wittig reaction, the carbene transfers to
organic acyls under mild conditions, giving olefins in high

yields40 (Eqn. 24).

—>  EtOCHCHR (24)

(RCHZ)BTa(CHR) + EtOCHO
R = t-Bu

intramolecular B-H migration is very common in alkylidene
complexes. For instance, Cp(CO)ZFe(CHEt)+3u, generated in situ
— : :
from Cp(CO)zFe(CHCHZCHZ) and acid, undergoes a facile 1,2 shift to

achieve the n%.propene complex (Eqn. 14). Likewise, other B-H
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containing alkylidene complexes convert to their olefinic comlexes
upon heating32’h].

Al though fhe chemistry of heteroatom stabilized, Fischer-type,
secondary carbenes has recently been explored, little is known.

Hence, their chemical reactivities are deferred and will be

discussed in the subsequent sections.
Spectroscopic Properties

The most commonly used analytical technique for elucidating

carbene complex structure is 'H NMR. The electron deficient ccarb

causes the carbene hydrogen resonance to be at very low fields,
ranging from 9 to 18 &. Temperature dependent 'H NMR studies also
provide a means of estimating rotational barriers around the

M-Ccarb and ccarb-x bonds. Schrockl*0 calculated the M-C

rotational barrier in CpZTa(CHZPh)(CHPh)+ to be about 19.2
kcal/mole, which is 1.8 kcal/mole lower than that of

CpZTa(Me)(CH2)+, whose metal-C__  bond is essentially a double

rb
bond based on an x-ray crystallogréphic study. The lower

. rotational barrier in szTa(CHZPh)(CHPh)+ was interpreted as

c double bonding at the expense

31

of M-C bonding and is in accord with the x;ray data”’'. Brookhart

indicating an increase in C

carb “ipso

¢

et al.SO, noted that the rotational energykabout the Ccarb;

_ ipso
bond of Cp(CO)ZFe[CH(p-tolyl)]+ is estimated to be 1.3 kcal/mole

higher than the phenyl analog by variable temperature 'H NMR
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experiments. This significant change was taken to indicate that

the aryl w electrons are delocalized over the céarb; this results

" in an accumulation of cationic character on the ring and an

increase in the C c bond strength by means of w overlap.

carb ipso

The extent of such electron redistribution chiefly depends on the
electron donating'abilities of para and ortho substituents of the

aryl. Methyl is fdund to be more electron donating than hydrogen

51

based on the pioneering works by Hammett in organic aryl systems-
Hence, the para-tolyl secondary carbene must have greater

c double bond character than its phenyl counterpart.

ccarb- ipso

Although the barriers for rotation in heteroatom-stabilized
secondary carbenes have not yet been determined, the general

consensus is that the C -X rotational barrier is expected to be

carb

substantially higher than that for the Cca -C rotation of in

rb

alkylidenes, due to more favorable X to Cc m-backbonding. For

arb
example, the methyl resonances (syn and anti relative to the

carbene,hydrogen) in RhClB(PEt (CHNMez), figure 1, do not

12

3)2

coalesce even at 150°C. This suggests strong

Figure 1. Structure of RhCHNMe2
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C-N w-bond character which is confirmed by an x-ray structural
determination which shows the C-N bond to be significantly shorter
than a typical C-N single bond.

13C NMR is also a valuable technique for establishing the

presence of a carbene ligandsz. In general, the C resonance of

carb
secondary carbene complexes occurs in the range of 190-350 PPM
downfield from TMS. With few exceptions, Ta and Nb alkylidenes and
Fischer-type carbenes appear below 300 PPM; they are also less

electrophilic and less prone to decompose than those at low fields

(300-350 PPM).

Structural and Bonding

Owing to the inherent instability of alkylidenes, few single
crystal x-ray structural determinations of secondary carbene
complexes have been described. Schrockl’0 reported the Tq-CCarb
distance in szTa(CHzPh)(CHPh) to be slightly longer than the full

C angle

double bond found in CpZTa(Me)(CHZ) and the Ta-ccarb- ipso

to open up l5° from the idealized sp2 hybridized angle of 120°.
More strikingly, the analogous bond in the 14-eletron complex,
(MeSCS)Ta(CHzPh)Z(CHPh)uh is marginally longer than that in the

carbyne, (Mescs)Té(PMe3)2Cl(CPh), and the Ta-C__ . -C angle is 166°

car
which amounts to being bent'5o from the analogous angle of the

carbyne. Since the carbenic phenyl rings in both cited

benzylidenes are twisted out of the Ta-C C plane by as much

carb ipso
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as hoo, p-pback bonding is virtually negligible; this is reflected

in the ob;ervatlon of little or no shortening of the ccarb-cipso

bonds. These data point to a strong M-Ccarb interaction and weak

Ccarb-cipso 7 overlap. These conclussons‘are also valid in the

cases of CPZW(CHPh)h] and CIZ(PEt W(O)[CH(CMe3)]38 where both

32
structures exhibit remarkable resemblance to the tantalum
complexes.

With the exception of the metal oxyl carbene complexzs, all

reported structural studies of Fischer-type secondary carbenes are

12,15,20,53

amino carbenes By and large, the Cca and N are

rb
approximately planar with an M-C-N angle in the range of 125-1400.

The observed deviations from the ideal 120° are presumably due to

the smallness of the carbene hydrogen. The metal-Cca and C N

rb carb

distances are invariably shorter than expected for their respective
single bonds. Thus, d-p and p-p interactions must both be

. . .o 25

important in amino carbenes. In CpZWECH(OZrH(MeSCS)Z)] , the

W-C distance is shorter than that in (CO)SW(Cth)Sb which has a

carb

w-ccarb double bond; the C-0 in CPZW[CH(OZrH(MeSCS)Z)] is

marginally shorter than a single bond which suggests that w-ccarb

d-p w-back bonding is more important than the ccarb-o P-p T
bonding. However, this result is probably not general for
monometallic oxyl carbenes owing to the fact that the Zr atom in

this carbene complex competes with the Cca b for the oxygen lone

r
pairs; this leads to a weakening of the C-0 m-interaction.
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The Present Research

Thé chemistry of sulfur-containing organometallic compounds
has been a(long-time interest in this laboratory. More recently,
we have extended our studies into sulfur-stabilized carbene complexes
of transition metals. In the course of these investigations, we
synthesized the first iron. thiomethoxyl hydrido carbene,
Cp(CO)ZFe[CH(SMe)]+ 27. Despite our earlier studies and recent in-

vestigations by other groups of {(PPh (CO)Z(CI)Os[CH(SMe)]}+ 19,

3)2
+ 26 28 . .

CpRe(NO)PPhB[CH(SMe)] and TPPFe[CH(SPh)]"", little is known about

the reactivity of thioalkoxyl secondary carbene complexes. Thus, we

have examined the chemical and physical properties of Cp(CO)ZFe[CH(SMe)]+

and its immediate derivatives.
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EXPERIMENTAL

General Procedure

All reactions were carried out under an N2 atmosphere at room
temperature, unless specified otherwise. Schlenk ware and a vacuum
manifold were standard equipment for carrying out the reactions. A
500 mt 3 neck-flask equipped with a stopcock in the bottom was used
for amalgam reduétidns. Low‘preSSUre (1-5 atmospheres) reactions were

"conducted in a pop bottle sealed with a neoprene 1id and metal cap.

The exchange of PF6- with other anions was performed by dissolv-
ing fhe desired complex in either acetone containing 10 eqv. of
(NHQ)PF6 or acetonitrile with 10 eqv. of KPF, solution. The mixture
was allowed to metathesize for ¥ hr, and the solvent was removed |
under reduced pressure supplied by a vacuum manifold which was about
1 torr. The resulting residue was extracted with CHZCIZ, thé com=-
bined extracts were filtered through a frit, and the resulting solu-
tion volume was concentrated under reduced pressure. A layer of a
Iéss polar organic solvent (Etzo, hexane, EtOH) was placed 6ver the
CH2C12 solutién, and the mixture was slowly chilled to -20° to in-

' duce crystallization.

Solvents
For our stddies, CH2C12 was distilled from CaH2 under an N2 at-
mosphere. The solvent MeCN was dried over CaH2 to remove most of the

moisture and then decanted into a fresh CaHZ-containing flask for
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distillation. The distilled fraction was then re-distilled from PZOS'

The CaH2 and P205 dryings were repeated once more before storing in a
Schlenk flask under a nitrogen atmosphere for later use. The solvent
Et20 was distilled from K and benzophenone. Tetrahydrofurén was dis-
tilled from Na and benzophenone and used immediately. Hexane was
purged with N2 and stored over 5 R molecular sieves. Acetorie was
distilled from PZOS twice before use. Methanol was distilled from
Mg and a catalytic amount qf I2 after standing for 12 hr.

Instrumentation

Infrared spectra were recorded on a Perkin-Elmer 281 spectro-
photometer; NaCl cells with 1 mm path length were commonly used ex-
cept for THF solutions when 0.1 mm thick cells were used. The instru-
ment was calibrated with gaseous CO, and the band positions are be-
lieved to be accurate to within 2 cm_l.

Proton NMR spectra were obtained with Varian 360 or Hatachi
R20B (60 MHz) spectrometers. ”iNMRspectra for variable-temperature
studies and low concentration samples were recorded on a JEOL FX9GQ

13

(89.55 MHz) Fourier transform spectrometer. C NMR spectra were ob-

tained with a Bruker WM300 (75.43 MHz) or a JEOL FX90Q (22.50 MHz)
31

Fourier transform spectrometer. P spectra were run on a Bruker

WM300 (121.44 MHz) instrument. Five mm diameter NMR sample tubes

were used for all spectra; Cr(acac)3 ( 35 mg/ml) was added, unless

13 31

specified otherwise, for “C and ° P samples to reduce data acquisi-

tion time. Tetramethylsilane (TMS) or deuterated solvent was used as
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‘BC NMR spectra. HBPOQ capillary in-
31

P NMR spectra.

an internal standard for ]H and
sert was employed as. the internal reference for
Chemical shifts for ]H NMR béhds are reported in § units relative to

31

TMS ; P resonances appeared upfield from H Poh and are assigned nega-

. 3
tive values.
GC traces were recorded on a Varian 1700 gas chromotograph equipped
with a 30-foot 5% SE30 capillary column. Mass spectra and GC-MS spec-
. tra were performed on é Finnigan 400 GC-MS with INCOS 2300 data system,
- GC Model 9610; Decomposition and melting points were determined with

a Thomas Hoover capilliary melting point apparatus and are uncorrected.

Elemental analyses were made by the Ames Laboratory.

Reagents
Organic . All alkyl phosphines and P(OPh)3 were purchased from
Strem Chemical énd used without further purification. A sample of

P(OCH2)3CMe was kindly supplied by Steve Socol; PC]3 and ClPPh2 were

" distilled before use. CHZNZ/EtZOBS, CICHZSMe56

58

, HC(SMe)357 and

CyNC” ™ were ;ynthesiied according to the literature procedures, and

CHZNZ/EtZO was dried with anhydrous Na2003 before use. All amines

except volatile onesv(MezNH, MeNHz, NH3) were stored over KOH over-

night and distilled from BaO. Me3N0-2H2

and dried by benzene azeotropic distillation.

0 was obtained from Aldrich

Inorganic  Samples of LiAIHn, LiAth, LiAl(OBut)jﬂ and
n-BuLi (2.5 M in hexane) were available from Alfa; LT(BEt3H) (1 M

" in THF), HBFh-EtZO and’ CF3503H wefe purchased from Aldrich; Mr:Z(CO)]0
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and (Cp(CO)ZFe)2 were obtained from Strem Chemical, and CH3503F was
acquired from Tridom Chemical (Fluka). Other chemicals were also

commercially available.

Synthesis, Reactions and X-Ray Structure

Secondary carbene complexes and derivatives of iron

Synthesis of Cp(CO)ZFe[CH(SMe)Z] from {Cp(CO)ZFe[C(SMe)Z]}PF6

and Li(Ath) A solution of 100 ml of THF containing
{cp(C0) Fe[C(SMe) ,13PF,, [11,(0.10 g, 0.23 mmol) was treated with
Li[AIHh] (0.020 g, 0.47 mmol); the yellow solution turned dark brown
immediately and evolution of gas was apparent. The mixture was
stirred for an additional 20 min, and the solvent was then removed
under reduced pressure to afford a stenchy brown solid. .The residue
was then extracted by rapidly stirring for 30 min with 20 ml of
hexane. The resulting extract was then filtered through Celite on
a glass frit under an N2 atmosphere. Upon evaporatfon under reduced
pressure, a yellow oil of Cp(CO)zFe[CH(SMe)Z] (0.056 g, 85%),[21, was
obtained. The IR and lH NMR spectra of the oily [2] were in accord
with the previously recorded spectra of this compound27; the oil was
used in subsequent reactions without further purification.

When this reaction was scaled up 10-fold, the major organo-
metallic product obtained upon extraction was-[Cp(CO)zFe]z,[3].

Synthesis of Cp(C0) FelCH(SMe) 1,121, from {Cp(CO),FelC(SMe),IIPF,

,[1]1, and Li(EtBBH) A suspension of [1] (2.0 g, 4.6 mmol) in 20 ml
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of THF was treated dropwise with Li(Et3BH) (4.8 m1, 4.8 mmol), diluted
with 5 ml of THF, via a 25 ml addition funnel in a period of 15 min.
The deep brown mixture was allowed to react for an additional 20 min;
the solvent was removed in vacuo, affording a brown oil. The oil

was extracted as described in the preceding synthesis to furnish
[21(1.3 g, 85%).

Synthesis of Cp(CO)zFe[CH(SMe)Z],[Z], from {Cp(coi‘zFe[c(SMe)zl}PF6

,[1]1, and Li(Al(OBut)3H A sample of [1] (2.0 g, 4.6 mmol) was sus-

pended in 20 ml of THF, Li(Al(OBut)3H) (1.5 g, 5.8 mmol) was added,

and the mixture was stirred for 30 min. The solvent was then evaporated
under vacuum, and the resulting residue was extracted as noted above.
This gave a mixture of [2] and a white inert solid which totaled 1.5 g.
The concentration of [2] in the mixture was determined by the inten-
sities of the v(CO) absorbances of the complex to be 80-85%.

Reaction of [Cp(CO),Fe]Na and [HC(SMe),]PF The organic
2 2 6

cation®’ was synthesized by adding HC(SMe)3(l.0 g, 6.5 mmol) in 10 ml
of Et,0 to a rapidly stirred 5 ml CH,Cl, solution of (CPh3)PF6 (2.3
g, 5.8 mmol) at -40°C. After mixing for 10 min, a white precipitate
was apparent. The solvent was carefully decanted via canula, and the
white solid was washed with dried Et20 at -40°C twice, and the re-
maining solvent was removed under vacuum to give [HC(SMe)Z]PF6 (1.1
g, 75%). The cation is sensitive to water and is best used immediate-
ly.

A 10 ml THF solution of Na[Cp(CO)ZFe]6O, synthesized from
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[Cp(CO)ZFe]2 (0.77 g, 4.4 mmol) and 3% sodium amalgram, was transferred to
a 10 m1 THF solution of [HC(SMe)Z]PF6 (1.1 g, 4.4 mmol) at -78°C. The
pale yellow solution turned dark at once and the only identifiable product
from the IR spectrum of the reaction mixture was [Cp(CO)ZFe]Z,[B]. Anal-

ogously, when K[Cp(CO)ZFe]61 was used, the outcome was identical.

Reaction of [Mn(CO)S]Li and [HC(SMe)z]PF6 Into a THF solution

of an(CO)]0 (0.10 g, 0.26 mmol), (EtBBH)Li (0.57 m1, 0.57 mmol) was
dripped at -78 C; evolution of H2 was evident62. After 30 min of mix-
ing, the solution of the resulting [Mn(C0)5]Li was transferred to a
THF solution of [HC(SMe)z]PF6 (0.12 g, 0.46 mmol) at -78°C using a
cannula tube. The resulting mixture was slowly warmed to room tempera-
ture by removing the cold bath. The solvent was then removed under
reduced pressure, and the resulting residue was loaded onto a 3x35

cm Florisil column and eluted withvhexane. Two yellow bands were
collected; the first band was identified by IR to be an(CO)lo; the
second band was partially characterized and is believed to be

(CO)SMn[CH(SMe)Z] (7 mg, 5%).
lH(cuc13) : 5.00(CH), 2.69(SMe)

Preparation of {Cp(CO)zFe[CH(SMe)]}X;X:CF 503,[4],BF4,[5] A

3
rapidly stirred solution containing [2] (0.10 g, 0.35 mmol) in 15 ml

of Et20 was treated dropwise via a syringe with CF H until pre-

S
3°%3
cipitation ceased (ca. 50 pl); a golden precipitate and MeSH, identi-

fied by its disagreeable odor, were found. The solvent was carefully
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removed by decantation, and the remaining solid was washed a few times
with dry Et,0 and pumped dry to afford {Cp(CO)ZFe[CH(SMe)]}CF3503,[4],
(0.10 g, 74%). The complex is very sensitive to water and modestly

to light and should be stored in the dark under N2 at -20°C. Even tak-
ing those pfecautions, decomposition of [4] is apparent after 2 weeks

of storage. Thus, it is best used immediately.

IR(CHZCIZ): 2067 s, 2026 s (2069 s, 2029 s were previously
reported)

‘H(cr3so3ﬂ)= 15.79(CH), 5.86(Cp), 3.59(SMe)

(c02c12): 14.86(br, CH), 5.11(Cp), 3.00(SMe)

A 13C NMR spectrum of the compound was not obtained due to ex-

tensive decomposition during data acquisition even without the addi-

tion of Cr(acac)3 which apparently accelerates the decomposition.
Like CF3SO3H, HBFh-EtZO also produced the'corresponding carbene

comp lex, {Cp(CO)ZFe[CH(SMe)]}BFh,[S], in 75% upon reaction with [2].

It exhibited similar spectral and stability characteristics to [4].
IR(CH,C1,): 2067 s, 2028 s

Preparation of {Cp(CO)ZFe[CH(SMe)]}PF6,[6] A solution of

[2] (0.20 g, 0.70 mmol) in 15 ml of dry Et,0 was transferred via a
cannula to a rapidly stirred solution of (CPh3)PF6 (0.18 g, 0.63 mmol)

in 10 ml of CHZCIZ. The resulting orange solution was slowly warmed
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to room temperature; a yellow precipitate was formed. An additional

15 ml of Et,0 was added to induce further precipitation. The suspen-

2

siqn was filtered through a fine frit, and the remaining solid wés
washed with Et20 thgn dried under vacuum to afford the (0;20 g, 75%)
crude prodgct {Cp(CO)zFe[CH(SMe)]}PF6,[6]. The substance is sparingly
solublie in CHZCI2 and was recrystallized from CHZCIZ/EtZO to afford
golden plate-like crystal of [6], though, it was found to occlude

diethyl ether as qstablished by its ]H NMR spectrum.
IR(CHZCIZ): 2069 s, 2029 s

' (cp,C1,): 15.24(br,CH), 5.15(Cp), 3.12(SMe)

]3C: not obtainable due to rapid decomposition in solution.

Reaction of Cp(CO)ZFeCH SMe, [7], and (CPh3)PF6 A sample of

2

(CPh3)PF6 (0.15 g, 0.38 mmol) was added to a rapidly stirred CH,Cl,

solution of Cp(CO),FeCH,SMe,[7]1, (0.10 g, 0.42 mmol)63, synthesized
2

2
from [Cp(CO)ZFe]Na and CICH,SMe, at -78°C. The solution was gradually
warmed to room temperature, and an IR spectrum of the reaction mix-
ture was obtained which revealed the presence of a small amount of
[61(v5%) and the disappearance of the iron thioether complex. Since
little of the desired product was obtained, no further purification

was conducted.

Preparation of {Cp(CO)ZFe[CD(SMe)]}CF3503 A sample of [1]

(0.10 g, 0.23 mmol) was suspended in 100 ml of THF, Li(Ath) (0.025 g,

0.60 mmol) was added, and the mixture was allowed to stir
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for 20 min. The resulting brown solution was-evaporated to dryness,
and the remaining residue was extracted with hexane. Workup as for
[2] gave Cp(CO)ZFe[CD(SMe)Z] (0;dh6 g, 70%). The crude product was
then dissolved in 10 ml of EtZO, and 30 Ul of'CF3503H was added. Fol-
lowing the established work up procedures for [4],
{Cp(CO)ZFe[CD(SMe)]}CF3503 (0.041 g, 65%) was isolated. The v(CO) ab-
sorptions of this prodﬁct are identical to those of [4].

Reaction of {Cp(CO)ZFe[CH(SMe)]}CF S0, with MePPh, Freshly

373
prepared [4] (0.12 g, 0.31 mmol) was suspended in 10 ml of CH,C1,;

MéPPh2 (0.10 g; 0.51 mmol) was added. The mixture was stirred for 20
min, giving a golden yellow sqlution. The solvent was removed under
vacuum, and the resulting oily residue was washed a few times to remove
excess phosphine. The anion of the remaining oil was metathesized with
KPFg in CH.CN. Recrystallization from CH,C1,-Et,0 at -20°C afforded
deep orange crystals of.{Cp(CO)ZFe[CH(SMe)(MePPhZ)]}PF6,[8], (0.13 g,

72%). Complex [8] is moisture and air stable and can be stored in-

definitely at -20°C under an N2 atmosphere.

Anal. caled.: for C 0 SP,FeFe, C: 45.37, H: 3.78

221220

Found: C: 46.00, H: 4.08
IR(CHZCIZ): 2021 s, 1971 s

'H(co3cn): 7.7(m, Ph), 5.16(Cp), 3.75(d, Jp, = 2.93, CH),

2.45(d, J = 0.73, SMe)

PH

= 12.46, PMe), I.;G(d, JPH
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'3c(cu3cn): 214.5(c0), 134.7(d, e = 3.9); 133-130; 127.7;
126.6; 124.3; 132.2 [Ph], 89.3(Cp), 22.5(SMe)

7.5(d, Jpe = 25.4, CH), 5.4 (d, Jpe = 11.72, PMe)

Reaction of {Cp(C0),FelCH(SMe)1}BF, with PPh, To a CH,CI,

suspension of [5] (0.10 g, 0.31 mmol), PPh3 (0.16 g, 0.62 mmol) was in-
troduced. The mixture was stirred until all of [5] went into solu-

tion (ca. 30 min). The solvent was then removed under reduced pressure,
and the residue was washed with Et20. It was recrystallized from

CH,C1,-Et,0 at -20°C giving {Cp(CO)ZFe[CH(SMe)(PPhB)]}BFu, [9al,

2
(0.16 g, 86%). Complex [9al is a bright yellow, air-stable material;
it may be stored at -20°C under an N2 atmosphere for months with no

noticeable physical changes.

Anal. Calcd.: ,0,PSF BFe, C: 55.32, H: 4.10

Ca7t2
Found: C: 55.23, H: 4.06
IR(CHZCIZ): 2027 s, 1975 s

]H(CD3CN): 7.35(m, Ph), 5.25(Cp), 4.28(d, Jp, = 1.46, CH)
1.67(d, Jpy = 0.74, She)

'3c(cn3CN): 215.5(d, Jpe = 5.86, €0), 213.0(c0), 135.1(d,
JPC = 7.81); 130.5(d, JPC = 11.72); 125.7; 122.0;
120.6 {Phl, 89.7(Cp), 23.2(SMe), 6.0(d, Jpe =

25.39, CH)
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Preparation of {Cp(CO)zFe[CH(SMe)(PPh3)]}PF6,[9b] Complex [4]

(0.12 g, 0.31 mmol) was allowed to react with PPh3 (0.16 g, 0.62 mmol)
to give an oily product, the residue was metathesized with [NHI’]PF6

in acetone. Upon workup and recrystallization from CHZCIZ-EtZO at

-20°C, {Cp(co)zFe[CH(SMe)(PPh3)]}PF6,[9b], was obtained in 82% yield.
IR(CHZCIZ): 2027 s, 1975 s
31 ) _ _ -
P(CDBCN). 3I.7(PPh3), 142.3(h, J, = 706.26, PF, )

Preparation of {Cp(CO)ZFe[CH(SMe)(PPhZCI)]}BFh,[IO] A freshly

distilled sample of PPh,C1 (0.14 g, 0.62 mmol) was injected into a
suspension of [5] (0.10 g, 0.31 mmol) in 10 ml of CH,Cl,. The reac-
tion was allowed to proceed for 30 min. Upon purification and re-
crystallization from CHZCIZ-EtZO at -20°C, dark orange crystals of
{Cp(CO)ZFe[CH(SMe)(PPhZCl)]}BFh,[10], (0.11 g, 62%) were obtained.
The material decomposes when exposed to the ambient environment for

a few hours.
IR(CHZCIZ): 2030 s, 1982 s

IH(CD3CN): 7.7(m, Ph), 5.21(Cp), 4.16(d, Jp, = 11.73, CH)

1.65(SMe)

'3c(cu3cn): 21h.4(d, Jpe = 5.86, €O}, 213.2(C0), 136.3;
134.0; 133.6; 126.5; 122.7 [Ph], 89.3(Cp),

22.7(SMe), 12.7(d, J,. = 15.62, CH)

PC
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Reaction of {Cp(CO)ZFe[CH(SMe)]}BFh with PCl A sample of

3
[5] (0.10 g, 0.31 mmol) reacted with 100 ul of freshly distilled

PCl3 in 10 ml of CHZCIZ. An infrared spectrum of the solution showed
two strong v(CO) bands (2031, 1982 cm‘l) which are consistent with
the phosphine adduct, {Cp(CO)zFe[CH(SMe)(PCIB)]}BFA,[ll]. However,
the product was not sufficiently stable to be isolated; thus, satis-

factory NMR data for [11] were not obtained.

Preparation of {Cp(CO)ZFe[CH(SMe)(P(OPh)B)]}PF6,[12] A sample

of P(OPh)3 (0.20 g, 0.67 mmol) was allowed to react with [4] (0.12 g,
0.31 mmol) in CHZCI2 for 30 min. The resulting solution was pumped
dry; the residue was metathesized with KPF6 in MeCN, and recrystallized
from CHZCIZ-EtZO at -20°C, affording dark brown crystals of
{Cp(CO)zFe[CH(SMe)(P(OPh)B)]}PF6,[12], (0.15 g, 722). Compound [12]

is quite stable toward moisture and air.

Anal. Calcd.: 0.SP_F,Fe, C: 46.83, H: 3.47

Co9H24055P,F¢

Found: C: 46.03, H: 3.66
_|R(CH2C]2): 2032 s, 1986 s

'M(CD,ON): 7.35(m, Ph), 5.25(Cp), 3.41(d, Jpy = 7.33, CH)

2.12(d, Jg, = 1.7}, SMe)

PH

l3c(c03cn): 214.5; 213.6 [C01, 150.7(d, Jo, = 13.68); 131.7;
128.3(d, Jy = 3.90); 120.6 [Ph], 88.1(Cp),

20.5(SMe, 10.78(d, J_.. = 130.86, CH)

PC
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Preparation of {Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}X, X =

crsso3([13a]), PF6([l3b]) A freshly sublimed sample of P(OCHZ)SCMe

(0.10 g, 0.68 mmol) reacted with [4] (0.12 g, 0.31 mmol) to give a

crude mixture of {Cp(CO)ZFe[CH(SMe)(P(OCH CMe)]}CF3503,[13a], upon

2)3
evaporation. The mixture was washed with Et20 and then recrystallized

from CH C]Z-Etzo at -20°C to yield a golden powder of [13a] (0.14 g,

2
87%) . This compound exhibits remarkable stability toward air; it
eventually turned black when exposed to laboratory lighting for few

days under NZ'

IR(CHZCIZ): 2041 s, 1992 s

Since [13al was obtained in powder form and was not suitable
for a single crystal X-ray determination, it was metathesized with
(NH[})PF6 in acetone. [13b] was isolated in 64% yield from CH2C12~

EtZO at -20°C. Microscopic crystals were found which were suitable

for X-ray analysis.
IR(CHZCIZ): 2042 s, 1992 s

1
H(FDBCN). 5.13(Cp), 4.74(d, Jpy = 5-37, OCHZ), 2.67(d, oy =

2.44, CH), 2.22(SMe), 0.94(CMe)

IBC(CD3CN)= 21k.0(d, Jp. = 3.66); 213.1[c0], 87.4(cp),
80‘7(d’ JPC = 6-]’ OCHZ)’ 36-3(d, JPC = 3"l.2,

CMe), 23.5(SMe), 13.0(CMe), -5.1(d, J . = 101.32,

PC
CH)
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31 ) - = -
P(CDSCN). 60.4(P(0CH2)3CMe), 142.3 (h, JPF 708.01, PF6 )

Crystal data {Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}PF6, MW 530.0,

monoclinic, P2,/c, a = 10.359(3), b = 12.284(k), c = 16.234(4) A,

3 y.

B = 95.25(3), V = 2056.9 A>, p = 1.711 g/cm3, 2

calcd.

Data acquiéition The title compound yielded yellow plate-like

crystals which were readily indexed using 12 independent reflections
and an automatic indexing procedure.su

The data were collected at ambient temperature with graphite-
monochromated Mo Ka (A = 0.70979 R) radiation on an automated four;
circle diffractometer designed and built at the Ames Laboratory;
w-scan; 4151 reflections measured in almost 4 octants; 26 < 45°;
decomposition corrections applied; 2502 reflections with | 3'30| after
" averaging; agreement between equivalent reflections is 4.2%.

The position of the Fe atom was located by analysis of a sharpened
three-dimensional Patterson function. All the remaining non~hydrogen
and Hl atoms were found by successive structure factor and electron
density map calculations; a combination of block and full-matrix

65

least~square refinement - of all non-hydrogen atoms was carried out.
As expected for the PF6-, packing disorder resulted in high con-
ventionalvand weighted residuals of R = 0.082 and Rw = 0.109, re-
spectively. The scattering factors66 were modified for anomalous dis-

persion effects.67 The bond angles (Table 5), bond distances (Table 6),

final atom positional parameters (Appendix |), thermal parameters
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(Appendix 2) and structural factors (Appendix 3) are summarized as
indicated.

Pyrolysis of {Cp(C0)_ Fe[CH(SMe)(PPh,)]1}BF A 13 mg sample of
2 . 3 L : .

[9a] was sealed in a 2 ml prescored ampule under an atmosphere of NZ'
The bottom 1/3 portion of the ampul was submerged in an oil bath
maintained at 200°C for 2 min, gas evolution was apparent. The am-
pule was then removed from the bath and cooled to room temperature;
it was broken open leaving a mixture of an amber oil and a brown
residue. The oily product was separated from the mixture simply by
extraction with CClh; it was found to consist of 4 major prodﬁcts by
GC. They weré determined by their GC-MS spectra to be cis and trans
1,2 bis(thiomethoxyl) ethylene, trithiomethoxylmethane and ferrocene.
The remaining residue was recrystallized from CHZCIZ-EtZO at -20°C,
af%ording bright yellow crystals of [C;‘)(CO)ZFePPh3]BF,+ (10.4 mg, 88%).
This product was characterized by its IR and ]H NMR spectra, which
are consistent with reported data68 for this compound.

GC-MS spectra of the CCl, solution (m/e)

34

Cis/trans MeSCH=CHSMe: 122(M + 2 for °'S isotope; Calcd. 8.8%,

found 8.6%), 120(M), 105(M-Me)

HC(SMe)3: 156(M + 2 for 3“5 isotope; Calcd. 13.2%, found

10.4%), 154(M), 107(M-SMe)

Cp,Fe: 186(M), 121(M-Cp), 56(M-2Cp)
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Pyrolysis of {Cp(CO)ZFe[CH(SMe)(P(OCH)3CMe]}PF6 A 30 mg sample

of [13b] was hegted at1180°C for 2 min as déscribed in the preceding
experiment. Thé resulting material wés recfystallized from CHZCIZ-
Et,0 at -20°C affording a brown powder of [Cp(CO)ZFeP(OCH2)3CMe]PF6
(17 mg; 65%). The complex was characterized by its IR, W and ]3C NMR
spectra, whi;h are in accord with those of an authentic sample pre-

pared from the reaction of [Cp(CO)ZFeTHF]BFh69 and P(OCH2)3CMe.

IR(CH2C]2): '2078 s, 2039 s

PH
OCH,), 1.93(CMe)

]H(CD3CN):_ 5.44(d, J,, = 1.22, Cp), 4.43(d, JFH = 5,13,

'3c(co3cw): 206.7(d, Jp.=39.06, C0), 88.7(Cp), 78.7(d, Jp.
= 5.86 OCH,), 33.0(d, 39.15, CMe), 14.4(CMe)

Synthesis of {cﬁ(co)ZFe[CH(SMe)(PhZPH)]}CF3so3,[14] Di -

phenylphosphine (0.12 g, 0.64 mmol) was added to [4] (0.12 g, 0.3}
mmo1) in 10 ml of CHZCIZ. The mixture was stirred for 20 min and then
' diluted_with.lo ml pf heptane. The solution volume was gradually re-
duced in vacuo until complete precipitation occurred; this gave a
bright yellow, malodorous solid. A The material was digsolved in a
minimum amount of MeNOé and a layer of diethylether was added to in-
duce crystallization at -20°C; {cp(co)zFe[CH(SMe)(PPhZH)]}CF3503,[Ih],
(0.11 g, 62%) wés‘isolated. Compound [14] is not very soluble in most

organic solvents and only sparingly soluble in nitromethane.
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Anal. Calcd.: C22H200552F3PFe, C: 46.16, H: 3.50

Found: C: 45.82, H: 3.54
IR(CHZC]Z): 2033 s, 1980 br

] — . —
H(c03cn). 7.72(m, Ph), 7.h5(dd, o, = 501.31; J,, = 10.63,
PH), 5.14(Cp), 3.46(dd, Jpy = 1.47; Jun = 10.63,

CH), 1.59(d, Jpy = 0.73, SMe) -

'3c(cn3N02): 214.9(d, Joc = 5.86); 213.8(c0], 135-130(Ph),

88.5(Cp), 23.3(SMe), 5.6(d, J,. = 21.49, CH)

PC

Preparation of {Cp(CO)zFe[CH(SMe)(HPCyz)]}CF3SO3,[]5], Into

a CH,C1, solution of [4] (0.12 g, 0.31 mmol), HPCy, (0.10}g,.0.51 mmo1)
was introduced. Upon initial workup as in the preceding synthesis,
0.12 g crude product of {Cp(CO)ZFe[CH(SMe)(HPCyZ)]}CF3SO3,[15], was
obtained. The material was recrystallized from THF-hexane giving

[15] (0.069 g, 39%). This material is bright yellow and is very solu-

ble in polar organic solvents.

Anal. Calcd.: C 0.S.F,PFe, C: 45.21, H: 5.48

22H32 523
Found: C: L45.47, H: 5.23

IR(CHZCIZ): 2025 s, 1975 s

lH(cn3cN): 5.78(d, m, Jp, = 439, PH), 5.16(Cp), 3.18(d, d,
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JPH = 1.47, JHH = 2.93, CH), 2.21(d, JPH =

1.10, SMe), 1.83(m, Cy)

'3c(coBCN): 216.2(br, C0), 215.0(C0), 89.2(Cp), 34-26(Cy),
23.3(SMe), -1.3(d, JPC = 19.53, CH)

Synthesis of {cp(co)zFe[cn(SMe)(PhPHZ)]}cr3503,[16] Phenyl-

phosphine (0.10 g, 0.90 mmol) was injected into a CHZCI2 suspension of
(4] (0.12 g, 0.31 mmol). After the reaction had proceeded for 20 min,
a yel low homogeneous solution was obtained. It was diluted with 10

ml of heptane; slow evaporation under reduced pressure furnished a
vellow precipitate. The solid was recrystallized from CHZCIZ-EtZO at

-20°C affording {Cp(C0),Fe[CH(SMe) (PhPH,)]}CF SO.,,[16], (0.089 g, 58%).
2 2 3773

Anal. Caled.: 16 ]60552F3PFe, Cc: '38.72, H: 3.23

Found: C: 37.84, H: 3.29
IR(CHZCIZ): 2036 s, 1987 s

IH(CDBCN): 7.7(m, Ph), 7.25(d, m, PH = 482.02, PH),
6.98(d, m, Joy = 502.18, PH), 5.18(Cp), 3.06(d,

d, J,, = 1.28, JHH = 9.9, CH), 1.79(SMe)

PH

'3c(co3coc03): 213.3(br); 212.3[c0], 135-130(Ph), 87.6(Cp),

22.2(SMe), 1.5(d, Jy. = 11.72, CH)

PC ~
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Preparation of {Cp(CO)ZFe[CH(SMe)(CyPHZ)]}PF6,[]7] The

reaction of HZPCy (0.10 g, 0.86 mmol) and [4] (0.12 g, 0.31 mmol) in

10 ml of CH2CI2 for 20 min gave a gummy residue after workup in accord-
ing to the procedures described in the preceding synthesis. Therefore,
the residue was metathesized with KPF6'in MeCN. Upon recrystallization,
{Cp(CO)zFe[CH(SMe)(CyPHZ)]}PFG,[l7], (0.080 g, 52%) wés obtained. Like

the other adducts, [17] is stable in air and can be maintained in-

definitely at -20°C under NZ'

Anal. Caled.: C]5H2202F65P2Fe, C: 36.15, H: L. 42

Found: C: 36.99, H: 4.45
IR(CHZCIZ): 2036 s, 1986 s

1 - ' _
H(CDCI3). 6.16(d, m, oy = 470.84, PH), 5.83(d, m, Joy =
472.29, PH), 5.15(cp), 2.87(d, m, Jp, = 7.7,

CH), 2.29(SMe), 1.90-1.41(m, Cy)

‘3c(co3cu): 214.2(d, JPC = 5,86, C0), 213.8(co), 87.6(cp),
31.8(d, Jp. = 37.11), 28.3, 26.5, 25.9[Cy],
22.4(SMe), -4.3(d, JPC = 19.53, CH)

31 X - - =
P(CDCI3). 13.2(t, Jp, = 470.84, H,PCy), -143.5(h, Jpp

710.62, PF6 )



86

Thermal rearrangement of {Cp(CO)zFe[CH(SMe)(HPPhZ)]}CF3503,[lh]

A 35 mg sample of [14] sealed in a prescored ampule was heated at 168°C
for 2 min, which turned it into a caramel-like substance. The ampule
was allowed to cool to room temperéture, then broken open. 1ts contents
were washed with Etib.and then extracted with CHZC]Z. Filtration and
evaporation of the CHZCI2 solution followed by recrystallization from
CHZCIZ-EtZO at -20°cC afforded pale yellow crystals of
{Cp(co)ZFe[Pth(cnzsne)]}cr3so3,[18],'(7 mg, 20%). This compound was

31

identified by its IR, ]H and P NMR spectra.

IR(CHZCIZ): 2057 s, 2012 s

1 . -
H(CD3N02). 7.7 (m, Ph), 5.38 (d, JPH‘— 1.46, Cp)

3.82 (d, Jpy = 6.1, CHZ),I.99 (d, J 1.46,

PH =
' SMe)

3'P(cu3cn): 63.69

Thermal rearrangement of {Cp(CO)ZFe[CH(SMe)(HPCyZ)]}CF3503,[15]

By a procedure analogdus to that used in the rearrangement of [14],
.20 mg of [15] was heated at 200°C for 2 min; 4 mg (20%) of
{Cp(CO)ZFe[PCyZ(CHZSMe)]}CF3503,[19], was obtained. This~comp6und was
identified by its IR and lH NMR spectra.

IR(CH,C1,) : 2049 s, 2005 s

1 , o R
H(CD,N): 5.41 (d, Jp, = 1.47, Cp), 3.21 (d, Jp, = 9.53,

cuz),z;sz (d, Jo,, = 1.84, SMe), 1.83 (m, Cy)

PH
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Preparations of Cp(CO),Fe[CH(SMe) (PPh,)1,[20] A THF suspension
2 2

of [14] (0.020 g, 0.035 mmol) was chilled at -78°C with an acetone-

dry ice bath. It was then treated with 19 ul of n-Bul.i (2.5 M in hexane),
and the mixture was warmed to room temperature slowly, producing a pale
orange solution. The solvent was removed at reduced pressure, and the,
remaining residqe was extracted with hexane to yield an air-sensitive

glassy product of [20] (0.013 g, 78%) upon evaporation.
|R(CH2C12): 2008 s, 1958 s

1 -
H(C6D6): 7.9-7.1 (m, Ph), 4.36 (Cp), 3.50 (d, JPH = L.39, CH)
1.56 (SMe)

The hexane-insoluble portion was recrystallized from CHZCIZ-EtZO at

-20°C, after having been washed with diethylether, to provide
{Cp(CO)ZFe[PPhZ(CHZSMe)]}CF3$O3,[18], (0.001 g, 5%).

Like n-buthyl lithium, a 10-fold excess of Et3N also worked well

for the deprotonation reaction in THF and CHZCI2 at room temperature.

Between 75-80% of [20] and 8-12% of [18] were isolated.

Reaction of Cp(CO)ZFe[CH(SMe)(PPhZ)],[20], with Me0SO,F Into

a 10 ml CH,C1, solution containing freshly prepared [20] (0.013 g,

0.031 mmol) from [14] and Et3N in CHZCIZ, 9

The solution was evaporated under reduced pressure to leave a glassy

20 Yl of Me0SO,F was injected.

residue. It was then washed with Et20, metathesized with KPF6 in MeCN,

and recrystallized from CH,C1,-Et,0 at -20°Cgiving [8] (0.015 g, 82%).
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Reaction of {Cp(CO)ZFe[CH(SMe)]}CFBSOB,[Q], with pyridine A

sample of 0.5 ml of pyridine was added to a 10 ml CHZCI2 solution of
(4] (0.24 g, 0.62 mmol); a golden solution was obtained. The solution
was then evaporated to dryness and washed a few times with ether to re~
move a trace amount of [2] leaving an oily substance. That material
was allowed to recrystallize from CHZCIZ-EtZO at -20°C for 24 hours to
yield {Cp(CO)ZFe[CH(SMe)(Pyr)]}CF3SO3,[Zl] (0.11 g, 38%) and traces of
(2], [7] and [37]. The remaining mother-liquor was then diluted with
Et20 and placed in a -20°C freezer for recrystallization. After a few
days, golden plate~like crystals of [21] (0;078 g, 27%) were obtained.
They are very sensitive to moisture and decompose upon prolonged ex-
posure to light. They may be kept indefinitely at -20°C under an inert

atmosphere.
Anal. Calcd.: CISHIAOSSZF3NFe; C: 38.71, N: 3.01, H: 3.01
Found: C: 39.47, N: 2.97, H: 3.13
IR(CHZCIZ): 2022 s, 1974 s

] . — . — L]
H(CDCI3). 9.31 (d, I = 5.49); 8.30 (t, g = 6.96); 7.92

(t, J,, = 6.60) [Pyr], 6.42 (CH), 5.10 (Cp), 1.92 (SMe)

HH

]3c(cuc13): 213.6; 213.2 [CcO], 143.0; 141.9; 128.2 [Pyrl],
87.2 (Cp), 64.5 (CH), 19.8 (SMe)
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Synthesis of {Cp(CO) Fe[CH(NMe,) ]}PF,,[22] A sample of [4] (0.24
-2 2 )

g, 0.62 mmol) was suspended in 10 ml of CHZC]2;~15 ml of gaseous MeZNH
was bubbled into the solution via a syringe.  The golden solution turned
yvellow-brown. The solution was diluted with. 10 ml of.heptane; its
volume was reduced to one-half under Qacuum, and the remaining solvent
was decanted affording a brown residue. The product was metathesized
with (NHh)PFG in acetone,,recryétallized from CHZCIZLEt 0 at -20°C to

2
furnish [22] (0.070 g, 30%).

Anal. Calcd.: CIOHlZOZNPFBFe; C:- 31.68, H: 3.17, N: 3.70

Found: C: 31.68, H: 3.16, N: 3.49
IR(CHZCIZ): 20#9 s, 2005 s

"M(co, o) 10.79 (CH), 5.30 (Cp), 1.94 (d, Jyy = 2.6, Nie)

HH
1.89 (d, JHH = 2.2, NMe)

]3c(co3cn): 234.9 (CH), 211.8 (co), 88.8 (Cp), 55.9; 47.7
[NMej T

Synthesis of'{Cp(CO)zFé[CH(NEtZ)]}CF3503,[23] Diethylamine

(65 11, 0.62 mmol) was added to a rapidly-stirred CHZC\2 suspension of
[4] (0.24 g, 0.62 mmol) and allowed to react for 2 min. Subsequent
follow=up as described préviously for [22] afforded, [23], (0.079 g,

31%) .
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IR(CHZCIZ): 2048 s, 2004 s

1 , .

H(CD,COCD,): 11.30 (CH), 5.59 (Cp), 3.9 (q, Jy, = 7.3, NCH,)
3.96 (q, Jyy = 7.3, NCH,), 1.47 (t, Jy, = 7.3,
Me), 1.36 (t, Jy, = 7.3, Me)

I3C(CDBCN): 232.4 (cH), 211.7 (c0), 88.9 (Cp), 58.8; 53.2
INCH,1, T4.4; 13.2 [NCH,be]

Reaction of {Cp(CO)ZFe[CH(SMe)(Pyr)]}CF3SO3,[21], with EtzNH

Diethylamine (14 ul, 0.12 mmol) was injected into a 5 ml CH,C1, ﬁolution
containing [21] (0.03 g, 0.06 mmol). Subsequently, 10 ml of heptane

was added. The resulting solution was slowly evaporated under vacuum
until the bulk of the CHZCI2 was removed; precipitation was apparent.
The rest of the heptane was decanted, leaving a pale yellow precipitate.

It was then recrystallized from CH CIZ-Et

2

20 at -20°C to afford [23]

(0.10 g, L2%).

Synthesis of {Cp(CO)ZFe[CH(NHMe)]}PF6,[24] Ten ml of gaseous

methylamine was bubbled into a 10 ml CH2C12 solution containing '[4]

(0.24 g, 0.62 mmol). The resulting solution was stirred for 2 min
and was then evaporated to dryness under reduced pressure; the remain-
ing residue was then washed with EtZO to remove [2], metathesized with

(NHh)PFG in acetone and recrystallized from CHZCIZ-EtZO at -20°C to give

[24] (0.063 g, 28%).
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Anal. Caléd.: C9H]002NPF6FG: C: 29.50, N: 3.84, H: 2.74
Found: C: 29.72, N: 3.58, H: 2.75

IR(CHZCIZ): 2055 s, 2007 s

IH(CDBCN): 10.90 (NH), 10.69 (CH), 5.29 (Cp), 3.33 (d, Jyy =

" 3.3, NMe)

l3é(co3cn): 238.6 (CH), 211.2 (C0), 88.6 (Cp), 45.8 (NMe)

Preparation of {Cp(CO)ZFe[CH(NHCy)]}CF3503,[25] To a 10 mi

CHZClzsolutionof [4] (0.24 g, 0.62 mmol), cyclohexylamine (80 ul,

0.62 mmol) was added. The mixture was stirred for 2 min and was then

diluted with 10 ml of heptane. After the solution volume was reduced

to one-half under reduced pressure, a yellow solution containing [2],

and a pale yellow precipitate were evident. The solution was decanted,

and the resulting residue was washed with EtZO and then recrystallized

from CH2C12-Et20 at -20°C affording pale yellow analytically pure

crystals of [25] (0.094 g, 35%). This substance is stable in air and

may be.stored jndefinitely in the dark at -20°C under NZ'

: u , , :
Anal.-Calcd.: € cH gO-NF.SFe, C: 41.20, H: K12, N: 3.20

Found: C:  41.23, H: 4.25, N: 3.16

IR(CH,C1,): 2054 s, 2004 s
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'H(c02c12): 10.76 (CH), 10.55 (NH), 5.25 (Cp), 3.52 (br);

1.56 (m) [Cy]

'3c(co3cn): 235.1 (cH), 211.3 (co), 88.8 (cp), 69.9; 32.5;

25.3; 25.1 [Cy]

Synthesis of {Cp(CO)ZFe[CD(NHCy)]}CF3SO3,[26] A freshly pre-

pared sample of {Cp(CO)2Fe[CD(SMe]}CF3SO3 (0.10 g, 0.26 mmol) was allowed
to react with 32 pl (0.26 mmol) of cyclohexylamine in 10 ml of CHZCIZ.

Purification as in the preceding procedure afforded [26] (0.36 g, 32%).
IR(CH,C1,): 2053 5, 2007 s

"H(cozclz)z 11.63 (br, NH), 5.25 (Cp), 3.4 (br); 1.56 (m)

[Cyl

CN): 2345 (t, J., = 23.4h4, CD), 211.3 (o), 88.8

"3c(co3

(Cp), 69.8; 32.5; 25.3; 25.1 [Cy]

Synthesis of {Cp(CO)ZFe[CH(NHﬁri)]}PF6,[27] As in the prepara-

tion of [24], the reaction of i-propylamine (0.036 g, 0.62 mmol) "and

[4] (0.24 g, 0.62 mmol) in 10 ml of CH,CI, afforded [27] (0.074 g, 30%).
CIR(CH,C1,): 2053 s, 2005 s

‘]H(CDCI3): 10.85 (CH), 10.64 (NH), 5.28 (Cp), 3.89 (h, Jyy =

6.6, NCHMe,), 1.38 (d, J, = 6.6, NCHMe,)
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3(eo,oN): 2345 (cH), 211.5 (co), 88.8 (Cp), 63.3 (NCHMe,)

21.8 (Ncuggz)

Synthesis of {Cp(CO)zFe[CH(NHBut)]}CF3SO3,[28] Analogous to

the preparation of [25], the reaction of t-butylamine (0.045 g, 0.62
mmol1) and [4] (0.24 g, 0.62 mmol) in CH,C1, produced a 0.15 g mixture

of [28] and (NH3But)CF3SO upon recrystallization from CH,C1,-Et,0 at

3

-20°C. The mixture was dissolved in 5 ml of CH Clz, and 100 U1 of NaOH-

2

saturated EtOH was added. The solution was allowed to react for 2 min
and was then pumped to dryness. The resulting residue was extracted with
hexane to give a golden solution after it had been filtered through a

Celite-padded frit under N The ether solution was treated with

2"

CF,SO_H until precipitation was completed (ca. 35 M1). The precipitate -

3773
was recrystallized from CHZCIiEtZO at -20°C affording analytically pure

crystais of [28] (0.097 g, 38%).

Anal. Calcd.: C H]60 SNFe; C: 37.96, N: 3.41, H: 3.89

13%16%F3

Found: C: 37.55, N: 3.44, H: 4.00
IR(CHZCIZ): 2055 s, 2007 s
'H(coc13): 10.83 (CH), 10.63 (NH), 5.27 (cp), 1.42 (Bu)

'3c(cn3cu): 231.2 (cH), 212.5 (co), 89.7 (cp), 66.5 (NC),

29.0 (Ncgg3)
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Reaction of {Cp(CO)ZFe[CH(SMe)(Pyr)]}CF3503,[21], with t-BuH,

A sample of t-BuNH2 (12 ul, 0.12 mmol) was added to [21] (0.030 g,
0.064 mmol) in 5 ml of CHZCIZ; the resultiﬁg solution was stirred for
10 min. The solvent was then removed unde} reduced pressure, and the
residue was recrystallized from CHZCIZ-EtZO at -20°C to provide [28]
(0.012 g, 47%).

Reaction of {Cp(CO)ZFe[CH(SMe)(Pyr)]}CF3SO with NH A 5 ml

3 3
was bubbled slowly (ca. 30 sec) into a rapidly stirred

gas sample of NH3

10 m1 CH,CI, solution of [21] (0.030 g, 0.064 mmol); as soon as the
addition of ammonia was completed, the solution was diluted with 10 ml
of heptane. The solution volume was reduced to one-half by fast evap-
oration under reduced pressure. The remaining solvent was decanted,
yielding a pale yellow precipitate. It was then recryﬁtallized from
CHZCIZ-EtZO at -20°C to give {Cp(CO)ZFe[CH(NHZ)]}CF3SO3,[29], (4 mg,

20%). It is quite stable to air and only soluble in very polar organic

solvents, e.g., CHZCIZ, MeCN.

lR(CHZCIZ): 2056 s, 2010 s
‘H(CD3CN): 11.51 (m, NH,), 11.30 (m, CH), 5.33 (Cp)

Preparation of Cp(CO)ZFe[CH(NCy)],[BO] To a 2 ml CH,CI, solution

of [25] (0.030 g, 0.069 mmol), 100 pl of NaOH-saturated EtOH was added;

the light yellow solution turned gold at once. The solution was evap-
orated to dryness under reduced pressure; the remaining residue was ex-

tracted with hexane. The extract was then filtered through a Celite-
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padded frit under N2 and pumped dry under vacuum, giving a thin yellow
film of [30] (0.015 g, 78%). Compound [30] is very sensitive to air
and decomposes at room temperature under N2 when allowed to stand for
a few hours to give [Cp(CO)ZFe]2 and cyclohexylisocyanide which was

identified by its characteristic odor.

IR(hexane): 2030 s, 2021 s, 2013 s, 1982 sh, 1971 vs,

1963 s

e = 1.79, CH), 10.15 (CH), 4.90;

4.85 [Cpl, 2.91(m); 1.58 (m) [Cy]

'H(coc13): 10.18 (d, J

Like the NaOH-EtOH reaction, the reaction of [25] with 50% NaH-
mineral oil also produced a 75% yield of [30] under similar conditions.

Preparation of Cp(C0) Fe[CH(NPr')],[31] Analogous to the
2

preparation of [30], the reaction of [27] (0.030 g, 0.076 mmol) and
100 yl of NaOH-saturated EtOH in 2 ml of CH2C12 produced [31] (0.013 g,
68%) . '

IR(hexane): 2028 sh, 2014 s, 1980 sh, 1971 s, 1963 s

'H(coc13): 10.21; 10.16 [d, J.,., = 2.20, CH], 4.94; 4.91 [Cp]

HH

3.20 (m); 1.17 (d, J,, = 6.23); 1.22 (d, J

HH HH =

6.23) [i-Pr]

Synthesis of Cp(CO)ZFe[CH(NBut)],[32] Following the preparation

of [30], [28] (0.030 g, 0.73 mmol) reacted with 100.ul of NaOH-EtOH
to yield [32] (0.014 g, 76%).
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IR(hexane): 2019 s, 1972 vs
‘H(cnc13)z 10.22 (CH), 4.84 (Cp), 1.10 (Me)

Reaction of Cp(CO)ZFe[CH(NCy)] with Me0SO,F Freshly prepared

[30] (0.015 g, 0.052 mmol) using the NaOH-EtOH route was dissolved in

2 ml of Et20. The solution was stirred vigorously and 45 ul (0.50 mmol)
of MeOSOZF was injected, a pale yellow precipitate formed. The solution
was carefully decanted, leaving the precipitate which was then washed
with Et20 a few times and pumped to dryness in vacuo to furnish a E/Z
mixture of {Cp(CO)zFe[CH(N(Me)Cy)]}SO3F,[33], (0.010 g, 88%) with a

26:74 ratio.
IR(CHZC]Z): 2049 s, 2003 s, 1998 sh

'H(co3cu): 11.03; 10.84 [CH], 5.32; 5.31; 5.30 [Cp],
3.8, 1.6 [m, Cyl, 3.48 (d, Jpy = 0.74, NMe) ,

3.44 (d, JHH = 1.10, NMe)

When 6 eqv. of MeOSOZF was used in the above reaction, the E/Z
ratio was 83:17; it was 90:10 in the reaction with 3 eqv. of MeOSOZF.

Reaction of Cp(CO)ZFe[CH(NPr')] with Me0SO,F Under the condi-

tions described above, the reaction of [31] (0.013'g,0.053 mmol) and
Me0SO,F (25 ul, 0.30 mmol) gave a E/Z mixture of
{Cp(CO)ZFe[CH(N(Me)(Pri)]}SO3F,[34] (0.013 g, 77%) with a 62:38 ratio.

Likewise, [34] was isolated in 74% yield and contained a 95:5 E/Z ratio
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of isomeric products when three eqv. of MeOSOZF was employed in the reac-

tion.
IR(CHZCIZ): 2044 s, 2000 s

]H(CD3CN): 11.04; 10.83 [CH], 5.32; 5.30 [Cp], 4.20; 3.90 [h,

JHH = 6.60, NEﬂMeZ], 3.45 (d, JHH = 0.73, NMe),
3.42 (d, JHH = 0.74, NMe), 1.36; 1.32 (d, JHH =
6.60, NCHﬁgZ

Reaction of {Cp(CO),Fe[CH(NHCy)]}CF.SO.,[25], with H,NR A5 mg
2 373 2

(0.01 mmol) sample of [25] was dissolved in 1 ml of CHZCIZ; 5 ul (0.05
mmol) of CyNH2 was injected. The mixture was stirred for half an hour.
After that time, the IR spectrum of the solution showed that Vv75% of
[25] had been consumed, and Cp(CO)ZFeH (2010 s, 1958 vs) and
NNLdic*clohexy]foramidinium (1712 vs) had formed. The solvent was
pumped out and the remaining solid was found to contain [Cp(CO)ZFe]2
and the organic product; this solid was extracted with Et20, and its

mass spec. was obtained.

MS of [CyNHCHNHCYICF SO,

m/e: 209 (M = CyNHCHNHCy), 208 (M-H), 110 (M-CyNH,)
Under the same conditions, 5 eqv. of NHZMe also converted 75%

of [25] to Cp(CO)ZFeH and a mixture of (RNHCHNHR')CF3SO3, (R = ¢y,

Me, R' = Cy, Me), in 20 min. The (MeNHCHNHCy)CF3SO3 compound was the
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major product on the basis of the mass spectrum.

MS of [CyNHCHNHMe]CF3SO3

m/e: 141 (M = CyNHCHNHMe), 140 (M-H), 110 (M-MeNHZ)

The reaction of t-BuNH2 with [25] was noticeably slower, and 20

eqv. of the amine was needed to observe appreciable reaction.

Reaction of {Cp(CO)ZFe[CD(NHCY)]}CF3503,[26], with NH,Cy A 30

mg (0.068 mmol) sample of [26] reacted with 60 pl (0.30 mmol) of CyNH,
in 5 ml of CHZCIZ. After 30 min of reaction, the solution was evaporated
and the mixture was analyzed by MS; the spectrum demonstrated that the
deuterium was incorporated into the foramidinium product. After MS
study, the sample was allowed to react with n=BuLi in THF to afford
CyNHCDNCy, whose NMR spectrum in CD3CN showed no 7.31 & resonance for
the CHN2 proton which was observed in the hydrogen analog.

MS for [CyNHCDNHCy]CF3SO3

m/e: 210 (M = CyNHCDNHCy), 209 (M-H), 111 (M-CyNHz)

Decarbonylation of {Cp(CO)ZFe[CH(NHCy)]}CF3503 into a 5 ml

solution of [25] (0.030 g, 0.068 mmol) was injected 670 Ul of a 0.123 M
acetonitrile solution of Me3N0; the pale yellow solution turned yellow-
red instantly. The solution was allowed to stir for an additional 10
min and was evaporated to dryness in vacuo. Extraction with CHZCI2 and
evaporation of the solvent gave {Cp(CO)(MeCN)Fe[CH(NHCY)]}CF3503,[36],

(0.028, 93%).
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A 0.10 g sample of [25] was added to a quartz tube equipped with a
magnetic stir bar and a water cooling probe; then 35 ml of acetonitrile
was added. The solution was irradiated with UV light at 254 nm for 2
hours at an ambient temperature which was maintained by running water
through the cold finger; a brown solution was obtained. Evaporation and
recrystallization from CHZCIZ—EtZO-hexane at -20°C afforded golden

cystals of [36] (0.086 g, 85%).
Anal. Calcd.: C]6H2]OMNZSF3Fe; C: L42.67, H: L4.67, N: 6.22
Found: C: 43.28, H: 4.70, N: 6.08
IR(CHZCIZ): 1994

'H(coc13): 11.84 (NH), 11.62 (CH), 4.76 (Cp), 3.56 (m);
1.88-1.26 (m) [Cyl, 2,35 (Me)

I3c(coc13): 243.9 (CH), 216.1 (co0), 133.7 (CN), 83.7 (cCp),
69.1; 32.1; 24.8; 24.6 [Cy]l, 5.1 (Me)

Reaction of {Cp(CO)zFe[CH(SMe)]}CF3S with ROH (R = Me, H) To

04
as5ml CH2C12 solution of [4] (0.10 g, 0.26 mmol), 100 ul of doubly

distilled-degassed H20 was added; the solution was stirred for 10 min.
During this time, MeSH liberation was evident by its odor and GC. The
solvent was evaporated under reduced pressure. The resulting residue
was extracted with benzene to give 28 mg (45%) of [7]. The remaining

residue was found to contain 42 mg (46%) of [37]. The identical reaction



100

was repeated and the crude mixture was analyzed by ]H NMR. On the base
of the integrated Cp resonance areaé, the [7]:[37] ratio was 1:1.

A 0.10 g (0.26 mmol) sample of [4] was suspended in I ml of CH,Cl,;
0.83 g (26 mmol) of dry MeOH was added. The mixture was stirred for 10
min and the gas phése above the solution was withdrawn by a gas-tight
syringe and injected into the GC; the presence of CO, CHM’ MeSH and the
solvent were estéblished by comparing retention times with authentic
samples. The solution was evaporated in vacuo, and the residue was dis-
solved in CD3CN for ]H NMR analysis. On the basis of the integrated
Cp resbnance areas, the relative concentrations of [371:[7] were 60:40.
The yield of this crude miXture was about 88%.

Reaction of {Cp(CO)ZFe[CD(SMé)]}CF3SO. with H,0 Following the

3
procedure for the reaction of [4] and H,0, {Cp(CO)ZFe[CD(SMé)]}CF3S

0,

was allowed to react with H20 in CHZCI2 for 10 min. After evaporation

to dryness, .the residue was extracted with benzene. A mass spectrum
of this solution showed m/e fragments for Cp(CO)ZFeCDZSMe (m/e: 212
(M-C0), 184 (M-2C0)) which was the sole product.

Reaction of [Cp(CO_)ZFeCH(SMe)]CF3SO3 with CH2N2 To a 10 ml

CH,C1, solution containing [4] (0.17 g, 0.44 mmol), anhydrous CH N, -

Et2055 was added dropwise until the evolution of N, ceased (ca. 1 ml).

The resulting orange solution was allowed to stir for 45 min, and a
yellow solution was obtained. The solvent was removed under reduced
pressure, and the oily residue was then washed with Et20. Extraction

of the oil with 10 ml of CHZCIZ, filtering the extract, and evaporating
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the solvent gave a yellow oil of {Cp(CO)ZFe[SMe(CH=CH2)]}CF3503,[38],
(0.13 g, 76%). The oil was recrystallized from dichloromethane/ethanol/
cyclohexane at room temperature for a few days, affording red needle

crystals of [38] (0.02 g, 10%).

IR(CHZCIZ): 2062 s, 2019 s

Hb S
] N\ ) _ 3
H(CD3CN). /p-é: ] 6.31 (m, Hc)’ 5.81 (m, JHch = 8.98, Ha);
Ha He

5.71 (m, JHbHc = 16.50, Hb), 5.38 (Cp),
2.47 (SMe)

]3C(CDZC12): 208.4 (co}, 130.8 (=CH), 124.1 (HZC=), 87.7 (Cp)

25.3 (SMe)

Synthesis of {Cp(CO)(PPh3)Fe[CH(SMe)]}CF3503,[4]] To 10 ml

of 'a THF solution of {Cp(CO)(PPh3)Fe[C(SMe)2]}PF6,[39], (0.10 g, 0.15
mmol) , (EtBBH)Li (0.16 ml, 0.16 mmol) was added dropwise, and the mix~-
ture was allowed to react for 30 min. The solvent was then removed in
vacuum, and the remaining residue was extracted with 20 ml of the mixture
of hexane-diethylether (75:25) giving a yellow oil of
Cp(CO)(PPhB)FeCH(SMe)Z,[hol, (0.0ﬁ8 g, 62%) upon evaporation. Complex
[40] had its v(CO) absorption at 1960 cm-' in hexane. This oily [40]

was then dissolved in 5§ ml of Et20, and 50 ut of CF

3
into the solution, providing a bright yellow solution and oil. The

SO3H was injected

solution was decanted, and the yellow oil was established by IR and

]H NMR spectrum to be [41] (0.041 g, 71%). The crude substance obtained
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here was not readily recrystallized; it is slightly soluble in Et20 and

resists hydrolysis.

IR(CHZCIZ): 2006

]H(CD3CN): 15,94 (CH), 7.4 (m, Ph), 4.8k (d, J ., = 1.10, Cp),

2.99 (d, Joy = 0.73, SMe)

Synthesis of {Cp(C0) (P(OPh) ;) Fe[CH(SMe) 1}CF SO, [44] As in the

reaction of [391, {Cp(co)(P(0Ph)3)Fe[c(5Me)2]}PF6,[h2] (0.10 g, 0.13
mmol) reacted with (Et,BH)Li (0.15 ml, 0.15 mmol) to give a yellow

oil of Cp(CO)(P(OPhg)Fe[CH(SMe)Z],[h3], (0.056 g, 76%), which had a
v(C€0) band at 1963 in hexane. The crude [43] further reacted with
CFBSOBH (50 pl1) in 5 ml of Et,0 to provide a yellow oil of [44] (0.047 g,
72%). Although it could not be recrystallized from CH,C1,-Et,0, spectral
characterization indicated that it was quite pure. Like [41], [44] is

moisture-stable.

IR(CHZCIZ): 2011

]H(CD3CN): 14.92 (cH), 7.27 (m, Ph), 4.79 (d, Joy = 1.10),

2.96 (SMe)

]3 4 = =
| C(CDBCN). 320.6 (d, Jpc 33.21, CH), 212.2 (d, JPc
39.07, €0), 150.5 (d, dpe = 9.7); 130.7; 126.5;

121.0 (d, Jpc = 5.85) [Ph], 34.6 (SMe)



103

Preparation of {cp(co)(P(oph)3)re[cH(NEt2)]}CF3so3,[45] A freshly

prepared sample of [44] (0.094 g, 0.14 mmol) was taken up in 10 ml of
CHZCIZ; EtZNH (27 u1, 0.28 mmol) was added. After the addition of amine,
5 ml of heptane was added to the solution, and the solution volume was
slowly reduced to 1/3 its original size; a pale yellow precipitate formed.
The remaining solvent was carefully decanted, and the precipitate was
recrystallized from CHZCIZ-EtZO,at -20°C to afford bright yellow crystals
of [45] (0.05k4 g, 56%).

Anal. Cajcd.: C30H3]N07F3PSFe; C: 51.95, H: .47, N: 2,02

Found: C: 51.61, 4.41, 1.87

IR(CHZCIZ): 1981

Y(co COCD_): 1136 (d, Jyyy = 5.13, CH), 7.41 (m, Ph), h.82 (4,

3
Joy = 1.10, cp), 4.11 (q, Jyy = 7-33 NCHZ)’ 3.89
(q, JHH = 7'33’ NCHZ)’ ]'hh (t, JHH= 7-33, NCHZﬂe),

1.30 (t, JHH = 7.33, NCHzMe)

'3c(cn3cu): 239.0 (d, J_. = 39.07, CH), 216.6 (d, J

PC pc = 41.02, €0),

‘151.5 (d, Joc = 9.77); 131.4; 127.1; 121.9 (d, 3.82)

[Ph], 86.6 (Cp), 60.1; 52.1 [NCH,1, 14.8; 13.9
[NCH,Me |
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RESULTS AND DISCUSSION

Synthesis of Cp(CO)ZFe[CH(SMe)Z]

The preparation of [2] was previously reported by McCormick and
Angelici,27 accomplished simply by reacting {Cp(CO)ZFe[C(SMe)Z]}PF6
,[11, with LiAlH, in THF (Eqn. 25).

{Cp(co)zFe[c(SMe)Z]}PF6 + LiAIHh——€>-Cp(CO)zFe[CH(SMe)Z] (25)

(1] (2]

Although this reaction proceeds smoothly and the yield reaches
85%, it is limited to small scale. Attempts to extend reaﬁtion 25
to larger scales were uniformally unsuccessful, and fhe major identi-
fiable product is [Cp(CO)ZFe]Z,[3]. Thus, alternative procedures for
synthesizing [2] were sought. Bodnar and Cutler32 demonstrated that
[Et3BH]Li is capable of donating hydride to Cp(CO)ZFe[C(Me)(OMe)}+

under mild conditions to furnish the ether product (Eqn. 26).‘

Cp(CO) (L) Fe[C(Me) (OMe) 1™ + [EtBHILI

\\\\N . (26)

Cp(CO) (L)Fe[CH(Me) (OMe) ]

“L = CO, PPh P(OPh)3

3’
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As anticipated, [1] is readily transformed to [2] in the presence of
the borohydride at room temperature in a respectable 85% yield, and

the reaction can easily be increased to a several gram scale (Eqn. 27).

{Cp(CO)ZFe[C(SMe)Z]}PF6 + [Et3BH]Li-——€>Cp(CO)ZFe[CH(SMe)Z] (27)

[l (21

To our surprise, the mild hydride donating agent, Li[(t-OBu)3AlH] also
works well. However, {[2] prepared by this method is often contaminated
with a small amount of a white inert substance which is probably an

aluminum-containing material (Eqn. 28).

{Cp(CO)ZFe[C(SMe)Z]}PF6 + Li[(t-OBu)3AlH]
1 ' 8
[ AW | (28)
Cp(CO)zFe[CH(SMe)Z]

[2]

Nevertheless, the aluminum hydride is easier to handle and more cost
effective than the borohydride, and the resulting [2] from Equation
28 is suitable for further studies.

Compound [2] is a bright yellow, air-sensitive material. It is
Feadily dissolved in most organic solvents, and displays two strong

v(C0) absorptions (2019, 1975 cm-]) in hexane.
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Attempted Preparation of [2]

Although [2] has been successfully prepared via the previously
described methods, the overall procedure is nevertheless laborious.
To improve accessibility to [2], a more direct synthetic method was
desired. The reaction of [Cp(CO)zFe]Na and [HC(SMe)z]PFe,59 (Egn. 29),

was attempted.

Na[Cp(CO) ,Fel + [HC(SMe),IPF, —>>[Cp(CO), Fe],

[31 (29)

Instead of [2], [3] is the sole identifiable organometallic product.
The formation of [3] is presumed to occur by oxidation of the anion,

1.70 That conclusion was also

credited to its low oxidation potentia
reached by Hartshorn et al.lu who attempted the synthesis of
{Cp(CO)ZFe[CH(NMeZ)]}+ from (MeZNCHZ)CI and the organometallic anion.
With a less reducing anion, [Mn(CO)S]-, however, approximately 5% of
(CO)SMn[CH(SMe)Z] is obtained (Eqn. 30). Although the complex has not

1

been fully characterized, its H NMR spectrum is consistent with

the formulation.

[(CO)SMn]Na + [HC(SMe)Z]PF6 —_ (CO)SMn[CH(SMe)Z] + NaPF6
+ (30)

MnZ(CO)]0
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Synthesis of

{Cp(CO)ZFe[CH(SMe)]}X, (X = CF3SO3, BFh)

Complex [2] is very sensitive to acid and readfly gives  the
carbene, {Cp(co)ZFe[CH(SMe)]}CF3sob,[h], and {Cp(CO),Fe[CH(SMe) 1}BF,, 5],
with the liberation of MeSH, upon reaction Qith CF3SO3H and HBFh-EtZO,

respectively in diethylether (Eqn; 31). The yields for these reactions

are good.
Cp(CO)ZFe[CH(SMe)Z] ?E3Le>'{Cp(co)zFe[CH(SMe)]}x + MeSH (31)
12 | X % |
[4] CF,80, 74
(51 BFh_ 75

Compounds Ih] and [5] are brigh; yellow powders which are stable to 0,
but decompose.upon expoéure to moisture and gradually decompose under
N2 to an indentified dark brown substance upon exposure to light for
several days. These.compbunds can not be isolated without being con-
taminated by an appreciable amount of Cp(CO)3Fe+,[37]. [4]1 and [5]
are sparingiy soluble .in CHZCI2 and dissolve readily in polar, THF
and CH3CN, and brotic, CF3SO3H, ;olvent;.

Infrared spectra of [4] and tS] are similar, exhibiting two
strong v(C0) absorptions in CH,Cl,: 2067, 2026; 2067, 2028 cm ',

respectively. These bands are an average of 17 cm-] lower than those

in'{Cp(CO)ZFe[CH(OMe)]}+,[h6],2h which suggests the [CH(OMe)] moiety
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has a lower o donor/m acceptor ratio than the sulfur analog. The ]H NMR

spectrum of [4] in CDZCI2 displays a broad singlet at 14.8 §, which is
characteristic of a carbene hydrogen. In triflic aéid, that resonance

is shifted to 15.8 § which is nearly 3 PPM downfield from the analogous
proton {n [46]. This indicates an increase in cationic character on

the o hydrogen of the carbene ligand going from methoxide to thiomethoxide
which is in line with the trend observed in the

{(PPh5) , (0) (L)0s [CH(x¥e) 1}* '? and {Cp(PPh,) (NO)Re [CH (xMe) }* 23,26

(X =0, S), series.

Synthesis of
{cp(c0),Fe[CH(SMe) I}PF,

Owing to the poor crystallizabilities and stabilities of [4] and
[5], the hexafluorophosphate analog was sought. Anion metathesis of
[4] and [5] with (NHI*)PF6 and KPF6 only resulted in decomposition; thus,
an alternative scheme was needed. The aforementioned, trityl cation
is capable of abstracting an o hydride from organometallic ethers,

24

MCHROR'™ "; to a lesser extent, methoxide can sometimes be removed by

.. kb5 . . . -

it. Although, thiomethoxide cleavage from HC(SMe)3 is facilitated

by (Ph3C)BFh,59 (Eqn. 32), the analogous reaction is unknown in organo-

metallic chemistry.

Hc(SMe)3 + (Ph3C)BFh—> Ph3CSMe + [HC(SMe)Z]PF6 (32)
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1

Table 2. IR? and 'H NMR® data for'{Cp(co)zFe[CH(SMe)]}x

X v(co)cm™! CH  ¢p SMe
CF S0, (4] 2067 s , 2026 s 14.86(br) 5.11 3.00
BF 51 2067 s , 2028 s
PF6, [6] 2069 s , 2029 s 15.24(br) 5.15 3.12

a . .
Solvent is CHZCIZ.

b .
Solvent is CDZCIZ.

©15.79 in CF.SO.H.

3773
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As hoped, (CPh3)PF6 readily reacts with [2] at -78°C affording a

golden powder of [6] (75%), (Eqn. 33).

Cp(C0) ,FelCH(SMe) ,] + (Ph3c)PF6—-—:>{Cp(c0)2Fe[CH(SMe)]}PF6 (33)
(2] (6]

+

'Ph3CSMe

Compgund [6] is significantly less soluble in organic solvents than

[4] and [5], and it is recrystallized from CHZCIZ/EtZO at -20°C to
yieid gélden platelets of [61 which occlude diethylether. Nevertheless,
[6] shares similar spectral cha;acteristics with [4] and [5] which are

“summarized in Table 2.

Direct Attempts to Prepare [6]

In light of tﬁe unsuccessful preparation of [2] in Equation 28,
attention was diverted into developing a direct method for preparing
[6] by avoiding [2]. Cutler2h has shown fhat [46] can be prepared in
a siﬁgle step simply by reaéting Cp(CO)ZFeCHZOMe,[47], with trityl

(Eqn. 34).

Cp(CO)zFeCH~OMe + (Ph3c)PF6——-:>{Cp(co)zFe[CH(OMe)]}PF6 + HCPh

2 3
[471 [46] (34)
WHen similar conditions are employed with Cp(CO)zFeCHZSMe,[7],63 6]

is the only identifiable organometallic product (vide infra), but is
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obtained in only approximately 5% yield (Eqn. 35).

Cp(CO)ZFeCHZSMe + [Ph3C]PF6——€> {Cp(CO)ZFe[CH(SMe)]}PF6 +
[71 + 6]

"Cp(C0) FeCH," (35)

The ineffectiveness of reaction 35 probably stems from the fact that

the a-hydrogen in [7] is less labile than in its oxyl counterpart. That
assumption is supported by the hydride transfer reactions of
Cp(PPh3)(NO)ReCH2+ and Cp(PPh_) (NO)ReCH, XMe (X =S, 0). In this
system, the thiomethoxyl complex reacts with the methylidene complex26
at 83°C during 8 hours whereas the methoxylether compound23 transfers
its hydride to the methylidene compound at -70°C (Eqn. 36).

Cp(PPh3)(No)RetH2+ + Cp(PPh3)(N0)ReCH XMe —> Cp(PPhB)(NO)ReCH

2 3

+
{Cp(PPhS)(NO)Re[CH(XMe)]}+ (36)

X=0,S5

Perhaps, the slcwer rate of oc-hydride removal from MCHZSMe compounds as
compared to MCHZOMe, results in an increase in the tendency of the trityl
cation to abstract MeS rather than H-, giving the methylidene complex

of the methylidene-MeSCPh adduct7] (Egn. 35). Since the decomposition

3
 product in Equation 35 has not been characterized, the presence of the

methylidene complex or the adduct has not been verified.
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Reaction of [4], [5] with Tertiary

Phosphines and Phosphites

As mentioned previously, the ccarb of metal carbene complexes is
frequently the site of nucleophilic attack. For instance, the transient
complexes, (co)SW[cH(Ph)]‘*3 and Cp(C0),,Fe [CH(Me) 1" 32 readily react
with PPh3 giving the stable phosphine adducts, (CO)SW[CH(Ph)(PPh3)]
and Cp(CO)ZFe[CH(Me)(PPh3)]+, respectively. When a CH,Cl, suspension
of [5] is treated with PPh3, the gradual dissolution of the insoluble
complex is apparent. The infrared spectrum of the solution shows that
[5] had been completely consumed (ca. 30 min) as indicated by the
absence of its v(C0) bands. Upon recrystallization, the resulting
material affords air-stable yellow crystals of {Cp(CO)ZFe[CH(SMe)(PPh3)]
}BFQ, [9a] in 86% yield. [9a] exhibits two strong v(CO) absorptions
(2027, 1975 cm-l) which are an average of 45 cm-] lower than those in
[5] (Table 2). This shift to lower energy indicates an increase of
metal to CO m-backbonding. The electron density at the metal which
facilitates greater backbonding is contributed by the phosphine's lone
electron-pair. By comparison, it should be noted that the v(C0) bands
of [9a] are about 15 cm-] higher than those found in [2]; this indicates
that the positive charge is delocalized onto the iron, which reduces
the degree of d-P m-backbonding from the metal to the carbonyls.

Similarly, a variety of tertiary phosphines and phosphites; MePth,
C1PPh,, P(OPh)3 and P(OCH2)3CMe, react with [4] and [5] to furnish

the corresponding adducts (Egn. 37, Tables 3-4). The anion of these



Table 3. Selected IR and lH NMR data for the phosphine adducts,

Cp(CO)ZFe[CH(SMe)L]+
Complex IR(v(co), cm-])a
Cp(CO)ZFe[CH(SMe)Z]C [2] 2012s 1960 s
{Cp(CO)ZFe[CH(SMe)(PPhZMe)]}PF6 8] 2021 s 1971 s
{Cp(CO)ZFe[CH(SMe)(PPh3)]}BFh [9a] 2027 s 1975 s
{Cp(CO)ZFe[CH(SMe)(PPh3)]}PF6 [9b] 2027 s 1975 s
{Cp(CO)ZFe[CH(SMe)(PClPhZ)]}BFh [10] 2030 s 1982 s
{Cp(CO)ZFe[CH(SMe)(PCI3)]}BFh (1l 2031 s 1982 s .
{Cp(CO)ZFe[CH(SMe)(P(OPh)3)]}PF6 [12] 2032 s 1986 s
{Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}CF3503 [13a] 2041s 1992 s
{Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}PF6 [13b] 2042 s 1992 s
a
CH,C1,,
b
CD3CN.

©In hexane (2018 s, 1968 s).
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H NMR
Cp CH SMe Other

5.16 3.75(d, JPH=2.93) 1.36(d, JPH=0.73) 7.7(m, Ph),
2.45(d, Jp,=12.46, PMe)

5.25 4.28(d, JPH=I.46) 1.67(d, JPH=0.7h) 7.35(m, Ph)

5.21 4.16(d, JPH=II.73) 1.65 7.7(m, Ph)

5.25 3.41(d, JPH=7.33) 2.12(d, JPH=I.7I) 7.35(m, Ph)

5.13  2.67(d, J..=2.44) 2.22 4.74(d, J..=5.37, OCH,),
PH 0.94(cMe) TH 2




Table 4. '3¢ NMR data for Cp(CO)ZFe[CH(SMe)L]+ in CD

CN solvent

3
Complex co Cp SMe
(8] 214.5 89.3 22.5
[9b] -215.5(d, JPC=5.86), 213.0 89.7 23.2
[10] 214 . 4(d, JPC=5.86), 213.2 89.3 22.7
[12] 214.5, 213.6 88.1 20.5
[13b] 214.0(d, JPC=3.66), 213.1 87.4 23.5
acp.cocp

3 3
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CH Other

134.7(d, JPc=3.9); 133-130; 127.7; 126.6;
124.3; 123.2[Ph]

7.5(d,_JPC=25.h) 5.4(d, Jpe=11-72, PMe)

6.0(d, JPc=25.39) 135.1(d, JPH=7.81); 130.5(d, JPH=II.72);
125.7; 122.0[Ph]

12.7(d, JPC=15.62) 136.3; 134.0; 133.6; 126.5; 122.7[Ph]

- a — . . - — .
10.8(d, JPC—]30.86) 150.7(d, JPC—13.68), 131.7; 128.3(d, JPC—3.9O),
120.6[Ph]

-5.1(d, Jp=101.32) 80.7(d, J
13.0(CMe)

pc=6-1, OCH,), 36.3(d, Jp=34.2, CMe),
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compounds can be reédily metathesized with PF6- to give a more man-
agable product. Astonishingly, the weak Lewis acid, PCI3, also gives

the corresponding adduct

{cp(C0) ,Fe [CH(SMe) ]}X -E-e>{Cp(co)2Fe[CH(SMe)(L)]}x

(4]
(37)
X = CF,S0,, BF)
L = PPh,, MePPh,, CIPPh,, PCI,, P(0Ph),, P(0CH,) 5CMe

in solution when reacted with [5], but it could not be isolated in
pure form without uhdergoing some decomposition. [4] fails to pro-

duce stable adducts with CH_CN, THF, Me

3 S, or AsPh

2 3

Spectral Properties of the

Cp(CO)ZFe[CH(SMe)(L)]+ Comp lexes

Uniformally, the ]H NMR re50nanceiof'the methine hydrogen of
these adducts (Table 3) is shifted upfield, as much as 12 PPM, from

the parent carbene complex, which is in the range of a saturated iron

7

Invariably, the methine carbon in these

13

alkyl complex, such as [2].2
compiexes occurs as a doublet in the C NMR spectrum due to coupling
with the phosphorous (31P | = %); the chemical shift of the methine
carbon is in the range of -5 to 12 PPM, as compared with -23.3 PPM.
observed in:[Cp(CO)ZFeCHzPPh3]BFq‘72

In the carbonyl region (Table 4), the majority of these addhcts

display three-line patterns for the CO groups as exemplified by [13b]



Cp

CH,

CMe CH

200 150 100 50 0
PPM

Figure 2. ]3C NMR spectrum of {Cp(CO)ZFe[CH(SMe)P(OCHZ)3CMe]}PF6,[13b],

in CD3CN.a Expansion of the carbonyl region

gll
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in Figure 2. This phenomenon can be explained by diastereotopism, which
has been cited in Cp(CO)zFe[CH(OMe)'(Me)].l*9 As a consequence of the
ﬁuc]eophilic attack by phosphorous on the ccarb’ the resulting methine
carbon becomes an optically active center, the complex can exist in
several rotomeric forms with the staggéred rotomers, whose Newman
projections are shown in Figure 3, being the most likely structures

for each enantiomer.

He QP s s P P R_CP A

0O cCO O CO OC o)
H S

A B C
Figure 3. Newman projections for Cp(CO)zFeCHPS
In all of the rotomers in Figure 3, the carbonyls are clearly
chemically and magnetically ﬁon-equivalent with respect to the phos-
phorus: thus, the CO groups should have different chemical shifts and
coupling constants with the P. Presumably, rotation about the Fe-C
bond is rapid relative to the NMR time scale even at the ambient
probe temperature at which the data in Tabie L were obtained. Con-
sequently, tﬁe carbony] pattern is the average of the various rotomers
and occurs as a déublet an& singlet‘ arising from different JPc values.
The chiral-methine carbon.also induces diastereotopism in PPhZMe adduct,
[8], whose ]3C spectrum shows two sets of phenyl carbon resonances,

though, its carbonyl signals are observed to be coincident.
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X-Ray Structure of [13b]

To ensure that the ylide moiety, [CH(SMe)(PRB)], was bonded to
the iron through the methine carbon rather than the sulfur, an X-réy
vcfystal determination was undertaken on [13b]. As illustrated in the
ORTE? drawfng,of theAdrganométallic cation portion (Figure 4), the iron
-‘rémains connécted to the formerly carbene carbon, Cl. The overall
molecular configuration of the cation is a three-legged piano-stool
strucfure where the carbonyls and C1 are the legs. fhe angles between
the legs éVerage 91.6° (Table 5) which is slightly greater than in a
regular octahedral complex (90°). To our surprise, a Newman pro-
jection through the Cl-Fe.bond of the organometallic cation reveals that
the complex adopts the most stericaliy hindered staggered rotomer, that
in which.bothAbulkf groups, S and P, are adjacent to thé Cp (Figure 5).
:It.is,not.clear why tBis isthe case; presumably, it is preferred due
‘to favorable packing in the lattice.

In general, Fe-C single béndvdistances in Cp(CO)ZFe-R complexes73-78
are in the_rénge.of 2.06-2.11 R. In the case of [l3bj,‘the Fe-Cl bond
leﬁgth is 2.08~; (Table 6) which is longer than tﬁe partiai.double bond
pbserved'ih Cp(CO)ZFe[CHZ(SMeZ)]+ (2.036)7] and is in c]ése accord with
' thatl(Z.li R) of the single bond complex, Cp(CO)ZFe[C(SMe)3].73 The
Fe-CO (1.78 aQerage) and FeC-0 (1.14 average) distances in tl3b] are
longer and shorter,:respectively, relative to the corresponding dis~
tances (1.76,’1115) in Cp(Cb)ZFeIC(SMe)3], although the differences

in bond distances are within experimental error. However, the v{(CO)



Figure 4. An ORTEP drawing of cp(co) ZFeCHSMeP(,OCH2)3CMe+
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Torsion angles (deg)

| b3.b2
C7-Fe-C -P] 157.37

C7-Fe-C =S 77.18

C_-Fe-C.-
7 Fe-C,-H

1
1
1
i
1
1

CB-Fe-C -S 171.52
C8-Fe-C -P‘ 63.03
C8-Fe-C -Hl 50.91

Figure 5. A Newman projection of the CpCZFeCHSP core viewing
through the Cl-Fe bond
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Table 5. Bond angles (deg) and their standard deviations (in paren-

theses) for {Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}PF6
Fe-C,-0,  176.7(1.1) | P1=05-C,  112.7(6)
Fe-Cg-0g 175.7(1.0) 0,-P,-0, 106.7(4)
Cg-Fe-C, 94.5(5) 0,-P,-0, 105.2(4)
C,-Fe-C, 87.5(4) 0,-P,-0, 104.8(4)
C,-Fe-Cg 92.9(k) 0,-C,-C; 107.3(8)
Fe-C,-H, 97.2(6) 0,-C,-C; 107.8(8)
Fe-C,-S 110.9(4) 1 05-Cp-C; 109.0(9)
Fe-C,-P, 112.8(4) cz-cs-c3 108.4(8)
H,-C =S 115.3(6) €5-C5-Cy, 108.6(9)
H,-Cy-Py 108.8(6) €,-C5-C,y 112.3(9)
$-C,-P, 111.14(5) C,=C5=Cg  110.1(9)
C,4-5-C4 103.0(5) €5-C5-Cq 107.5(8)
C,-P,-0,  113.6(4) C4~C5-Cq  110.0(9)
Cy-Py-0, 113.4(4) Cg=C107C 109.3(1.0)
C,-P=0,  12.5(4) C107Cy17Cy, 108.7(1.0)
P-0,-C,  114.9(6) C117C12-Cy3 104.5(9)
P-0,-C;  114.9(6) C197C137Cq 108.5(1.1)
C57C4=C1o 109.0(1.0) F=Py=Fc  175.909)
Fi-Py~Fy 178.2(6) F3=Py-Fg 172.8(9)
Fy=Py=Fs 88.4(5) Fa-Py=F),  83.5(7)

Fg-P,=Fg 94.8(1.0) Fg-P,-F, 89.6(7)
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Table 6. Interatomic distances (R) and their estimated
standard deviations (in parentheses) for
{Cp(CO)ZFe[CH(SMe)(P(OCH2)3CMe)]}PF6

Fe-C, 2.085(9) 0,-C, .49(1)
Fe-c7 1.78(1) 02-c3 .48(1)
Fe-Cg 1.78(1) 0,-C), .53(1)
Fe-Cg 2.13(1) C,-Cs .54(1)
Fe-Cyq 2,11(1) C,-C; .57(1)
Fe-C,, 2,08(1) C4Cs .51(1)
Fe-C,, 2.12(1) C;~Ce .55(1)
Fe-Cy3 2,16(1) C3-Cio (1)
C,-0,, 1.13(1) Ci07C11 .37(1)A
Cg-0; 1.14(1) C117Cy2 47(2)
€,-s 1.809(9) C127Cy3 .46(2)
C,-H, 1.054(9) C,57Cq -39(1)
C,-P, 1.732(9) P,-F, .60(1)
5-Cyy 1.82(1) P,-F, .593(9)
P,-0, 1.551(6) Py-Fs | .55(1)
P,-0, 1.547(7) P,~Fy, .62(1)
Py-0, 1.544(7) Py~Fs 47(1)
P,~Fg .52(1)
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absorptions of [13b] (2042, 1992 cm-]) are noticeably higher energy
than those of Cp(CO)ZFe[C(SMe)3](20]3,l96h cn™'). Thus, on the basis
of the X-ray results together with IR data, it appears there is less
d-p m-backbonding to the €O groups in [13b].  The C1-S bond (1.809) is
found to be in good agreement with a typical C~S single bond distance
observed in Cp(CO)ZFe[C(SMe)B] (1.809) and compares favorably with
the values obtained from microwave studies of MeSH (1.819),79 and
Me,s (1.802).%

.The P1-C! bond distance (1.732 R) is in close accord with those
in the terminal carbene phosphine adducts: Me3AuCH2PPh3 (1.755 3)8‘,
(C0)3Ni[CH(Me)PCy3]82 (1.745 R), trans [Pt(CHZPEtB)I(PEt3)2]+ (1.77
A8 and {(1,5-c8H]2)Pd[CH(siMe3)PPhMe2](SiMe3)(c1)}+ (1.780 3)8“;
but is noticeably ldnger than those in the ylides,
(CO)SW[SMe(C(SMe)PPhZMe)](].704)85 and CPZCIZr[CH(PPh3)] (1.7]6).86

Thus, the P1-C] bond may be considered a single bond.

Thermal Decomposition of [9a] and [13b]

Recently, in the course of studying the ele;trophilicity of . [1]
toward tertiary phosphines, Angelici and Matachek87 observed the forma-
tion of {Cp(CO)ZFe[C(SMe)ZPEf3]}PF6 when the carbene reacted with;PEt3
at -78°C (Eqn. 38).
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{Cp(co)ZFe[c(SMe)ZJ}PF6 + PEt3 C;Z§7: '{Cp(co)ZFe[c(SMe)ZPEt3]}PF6
[1] |

0°C (38)
v

[Cp(CO)zFe(PEtB)]PF6 + (Mes)zc;c(SMe)2

This triethylphosphine adduct was described as having spectral proper~
ties similar to those of the compound in Tables 3-4. However, it was
not isolated due to its inherent instability and decomposed to
[Cp(CO)ZFe(PEt3)]PF6 upon warming fo 0°, and the remaining carbene
fragment may have dimerized to give the tetrathiomethyoxyl ethylene.
To evaluate the generality of this degradafion reaction, the
thermal stabilities of the 3°PR3 adducts, [9a] and [13b] were investi-
gated. In contrast to the PEt3 adduét, both complexes remain unaltered
in refluxing CH2C12 and THF for two hours and maintain their structural
integrities even when heated at 100°C in the solid state under an N2
atmosphere for 15 min. When solid [9a] and [13b] are heated for 2
min at 200 and 180°C, respectively, decomposition occurs, affording
[Cp(CO)ZFePPh3]BFh (88%) and [Cp(CO)ZFeP(OCHZ)3CMe]PF6 (65%), respective-
ly- (Eqn. 39).

{cp(c0) ,Fe [CH(SMe) L1} —5>Cp(C0) L™ + cis and trans (MeS)CH=CH(SMe)

+ Hc(SMe)3 + Cp,Fe (39)

L = PPh P(OCH2)3CMe

3’



127

Both organometallic products were identified by comparing their spectral
data with authentic samples synthesized from the reaction of
[Cp(CO)ZFeTHF]+ and L.69 The organic produ;ts separated from the
pyrolysis reaction of [9a] were identified by their GC-MS spectra to be
cis and trans 1,2 bis(methylthio)ethylene in about equal proportions,
trithiomethoxyl methane, and ferrocene. Undoubtedly, the olefins are
derived from the coupling of '"CH(SMe)" fragments; whether this coupling
involves free carbene or coordinated carbene ligand is unknown, but
certain thioalkoxyl carbenes have been shown to produce olefins under the
proper conditions (Eqn. 40), and carbene éomplexes aré'also known to

release the carbene as an olefin-product (Eqn. 41-43).

Phs\
2 /c: = (PhS)2C=C(SPh)288 © o (b4o)
" PhS
+ 5 4g _
2{Cp(C0)2Fe[CHPh]} ————=> (Ph) CH=CH(Ph) (41)

(CO)SW[C(Ph)OMe] + Ph

-«

P=CH, —> w(CO)SPPh

3 + (Ph) (MeO)C=CH289 (42)

3

hv

C1,PPh ,PtCH,PPh > c12Pt(PPh3)2 + 'CH," (43)

3 3
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Reaction of [4]

with Secondary Phosphines

The reaction between secondary phosphines and transition metal

carbene compliexes is similar to those of tertiary phosphines, but with

91

a slight variation. Kreissel et al. observed that MeZPH readily

reacted with (CO)SCr[C(OMe)(Ph)] to give (CO)SCr[C(OMe)(Ph)PMeZH].
Upon stirring the adduct in acetone, rearrangement occurred affording
a phosphine coordinated complex (Eqn. b4).

OMe

Pentane

(CO)SCr[C(OMé)(Ph)]'+ Me,PH (co) Cr—C—Ph (44)

HPMe2

J/ acetone
(CO)SCr[P(Me)Z[CH(Ph)OMe]]

More'récently, Pickering et al. 85 observed a similar rearrangement

in thé reaction of'(C0)5W[C(SMe)2] and PhZPH. In that case, the
phosphine-complex was isolated and the phosphine adduct wés p}esumed
to be an intermediate, although there was no sbectroscopic evidence
for it (Eqgn. hS).

(CO)SW[C(SMe)Z] + PPhZH -——€>[(CO)SW-<i SMe] —=>(C0) WIPPh CH(SMe)

HPPh
(45)



Table 7. Selected IR and ]H NMR data for the primary and secondary
phosphine adducts, Cp(CO)zFe[CH(SMe)L]+ and their derivative

"~ Complex IR( (co0), Cm-l)a

{Cp(CO)zFe[CH(SMe)(PPhZH)]}CF3503 4] 2033 s 1980 s
{Cp(CO)ZFe[CH(SMe)(PCyzH)]}CF3$03 [15] 2025 s 1975 s
{Cp(CO)zFe[CH(SMe)(PPhHZ)]}CF3$03 [16 ] 2036 s 1987 s
{Cp(CO)ZFe[CH(SMe)(PCsz)]}PF6 [17] 2036 s 1986 s
{Cp(CO)ZFe(PPhZCHZSMe)}CF3SO3 [18] 2057 s 2012 s
{Cp(CO)ZFe(PCyZCHZSMe)]}CF3SO3 91} 2049 s 2005 s
Cp(CO)ZFe[CH(SMe)Pth] [20] 2008 s 1958 s
a
CH,C1,,.
b
CD3CN.
C
'coc13.
d
CD3N02.

e
C6D6 .
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H NMR
Cp CH SMe
b _ -
5.14 3.46 (dd, Jpy=1-47, 1.59(d, JPH—0.73)
JHH=10.63)
b - -
5.16 3.18(dd, JPH—I.h7, 2.21(d, JPH—I.IO)
JHH=2.93)
5.18° 3.06(dd, Joy=1-28, 1.79
. JHH=9.9)
5.15 2.87(dm, Jp,=7.7) 2.29

_ d

5.38(d, Jp,=1.46)
_ b

5.41(d, J5,=1.47)

L, 36

3.50(d, Jp,=h.39)

1.99(d, Jp,=1.46)

2.32(d, Jp,=1.84)

1.56
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Table 7. continued

vOther

7.22(m, Ph)

7.45(dd, JPH=501.31, J,,=10.63, PH)

HH

1.83(m, Cy),
5.78(dm, JPH=h39, PH)

7.25(dm, JPH=482.02);
6.98(dm, JPH=502.18)[PH], 7.7(m, Ph)

1.90-1.4.(m, Cy), 6.16(dm, J =470.84);
5.83(dm, J,,=472.29) [PH]

3.82(d, Jp,=
7.7(m, Ph)

6.1, SCHZ),

3.21(d, Jp,=9.53, SCH,),
1.83(m, Cy)

7-9]'7° ](m, Ph)




Table 8. ]3C NMR data for the primary and secondary phosphine adducts,
‘ Cp(CO)ZFe[CH(SMe)L]+ and their derivatives

Complex co Cp SMe
11472 214.9(d, Jp=5.86), 88.5 23.3
213.8 ' '
[151° 216.2(br), 215.0 89.2 23.3
1639 - 213.3(br), 212.3° 87.6 22.2
n7® 214.2(d, Joc=5.86), 87.6 22.4
213.8
a
CD N0,
b
CD5ON.
(o4
coc .
d
CD4C0CD5.
e
cD,C1,-
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" CH

Other

5.6(d, JPC=21.h9)
' _ c

-1.3(d, JPC—19.53)

| 1.5(d, JPC=II.72)

-4.3(d, JPC=I9-53)

135-130(Ph)

34-26(Cy)

135-130(Ph)

31.8(d, JPH=37.]I);

28.3; 26.5; 25.9[Cy]
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The addition ovaPth or HPCy2 to a dichloromethane solution of
[4] at room tehperature, results in the isolation of air~stable phos-
phine adducts in fair yields, {Cp(C0),Fe[CH(SMe)PPh,H]}CF,SO,, [14], and

{Cp(CO)zFe[CH(SMg)PCyZH]}CF3SO3,[15], respectively (Eqn. 46).

{Cp(CO)ZFe[CH(SMe)]}CF3803 + RZPH——;>{Cp(CO)2Fe[CH(SMe)PRzH]}CF3803
[4] R %
(46)
[14] Ph 62
[151 Cy 38
The JPH coupling constants for [14] and [IS] are 501 and 439 Hz, re-

spectively, and are consistent with the hydrogen atom being bound to
the phosphorus.92 Both cémplexes have speﬁtral characteristics (Tables
7-8) similar to those of 35 phosphine adducts.

in contrast to (CO)SCr[C(OMe)(Ph)(PMeZH)],[lh] is stable in acetone
for é period of 12 hours, and shows no noticeable decomposition in re-
f}dxing CHZCI2 and THF for 2 hours. However, it Qndergoes hydrogen mi-
gration when heated at 1686C in the solid state to yield
{Cp(CO)ZFe[Pth(CHZSMe)]}CF3503,[I8] (Egn. 47). Much of the material
obtained from the pyrolysis reaction is insoluble in common organic
solvents and is believed to be a decomposition product of [14]. Like-
wise [15] is converted into {Cp(CO)zFe[PCyz(CHZSMe)}CF3303,[19], at

elevated températures (Eqn. 47).
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SMe

‘ A
[}p(CO)ZFe——C——H c:-'3so3 ———s>[Cp(C0)2FePR2(CHZSMe)]CF3SO3 (47)

HPR2

R °c %
[18] Ph 168 20

[19] Cy 200 20

IR spectra of these products show two strong v(CO) bands in the re-

+

3

NMR spectrum, the PH signal is no longer present and a new resonance

gions where Cp(CO)ZFePR comp lexes absorb68 (Table 7). In the proton
appears with a JocH ( <10 Hz) coupling constant, which is consistent
with the expected value (0.5-20 Hz)92 for phosphines of the type
RZPCHZR'.

A possible mechanism for reaction 47 is one that suggested for
reaction 45.93 Thus, the thioether group migrates to the iron and
coordinates by lone pair donation from the sulfur giving a phosphorane
complex (Scheme 1). Subsequent proton migration from the P to the €
atom followed by phosphine displacement of the sulfur furnishes the .
observed product. |

In an effort to determine the validity of Scheme 1, thermolysis
of [14] was carried out at lower temperatures, in the hope of detecting
the presence of the postulated intermediate sulfur-coordinated com-
plexes. However, at 150-160°, no reaction takes place (vide infra).

Thus, the sulfur coordinated intermediates must be short-lived at
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o+

/SMe /Me*
Fe-CH  — > FeX |
HPR o
2 HPR, \
N Me”
A) - (®)
H2
R2

/

Fe= CP(CO),Fe | Fe—PRo(CH,SMe) "

Scheme 1
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168°, which is thejminfmum reaction temperature. Conceivably, the
rearrangement reaction couid broceed by an entirely different mechan-
ism,:in‘which sulfuf-bound complexes are not involved.

Afternatively, rea;tion 47 could be base catalyzed, where re-

. movalvof_the'phosphonium hydrogen of.the adducf is the initial step.
The base iﬁvolved in the deprotonation perhaps is PHR2 which is de-
rived from decompositidn of the adduct (Schgme 2). Following attack
on the iron by the resulting phosphine, reprotonation of the ylide
with tﬁé conjugate acid or a H+ donor, such as the‘adduct,‘wou]d
give the obsérved product.

In the:coﬁrse of these;investigations? [14] was found to be de-
protonated by n-BuLi in THF or E£3N in CH,C1, to yield mainly
Cp(CO)ZFe[CH(SMe)PPHZ],[20], and 5-12% of the rearranged complex, [18].
Howevéf, when 1/3 eqv. of base‘is used, a mixturevconsistiné of

[14], [18] and [20] results and [20] is only a minor product (Eqn. 48).

: base'>
{Cp(C0) ,Fe [CH(SMe) (PPh,HIICF;S0, o
- R > THOSCF

ar | R )

{Cp(cq)ZFe[PehZCHzgmg]}CF3so3 + Cp(co)zFe[cu(SMé)PPh2] 

(18] ' , ‘ ' {20]

‘base: n-BuLi/THF; Et ?

3N/CHZCI
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SMe” Me s
H

Fe—CH + B > Fe- + BH
HPR ) \
2 (n) TH2
\
Fe-pecd
e-p= (B
“SMe )
%
2

B + Fe-PRy(CHo)sMe”

Fe=Cp(CO)sFe

B=hase

Scheme 2
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These experiments suggest the rearrangement of []hj to [18] is probably
base influenced and the reactién is no£ catalytic, at least under the
conditioﬁs in Equation 48.

Under pyrdlytic conditions, the base involved in inducing the re-
arrangemeht reaction togld'be PR2H which is generated by dissociation
from‘the adduct Cp(CO)ZFe[CH(SMe)L]+. Indeed, a>5:l mixture of neat.
[15]:PCy2H gives [19] and a monocarbonyl complex, based on the single
v(C0) band (1965 cm~]) and apparent liberation of CO during the reac-
tion, (vide infra), at a considerably lower temperature (150°C) (Eqn.
49)7 However, a 5:1 mixture of [lh]/PhZPH produces moétly a CO sub-

stituted product at 100°C.

150°

(Cp(C0) FeCH(SMe)PLy,HI}CF,S0, 22 NR (49)
(15] 5. eqv. | o ’
) \ PCyzH '
o > {Cp(c0),Fe[PCy, (CH,SMe) 13CF S0,
(19]

Evidently, the‘Et3N, mn~BuLi and PCyzH bases assist the rearrange-
ment reaction; thus, Scheme 2 could be a viable alternative mechanism

and deserves épecial attention in future work.

Preparation of [20]

The phosphonium proton in [14] is readily removed by n-Buli
at -78°C to give [20] predominantiy; the reaction may be reversed by

.-adding;CF3SO3H (Eqn. 48). An Et,0 solution of [207 decomposes slowly
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in air. Attempts to crystallize [20] from Et20/pen§ane at -78°C only
resulted inbdeeomposition. In several instances,'an EfZO extract
consisting of[20] decomposed to [|8j and a deep-red unidentified ma-
terial, when f|ltered through a frit under an N2 atmosphere. This de-
composition reaction is not well- understood and seldom reproduciblie.

A closer examination of reaction 48 reveals that it also provides
a.small amount of [18] (5%) When the.reaction is carried out at

room temperature, the yteld of [18] increases to 10%. Similarly,

Et3N reacts with [lh] in CH2C1 at ambient temperature to produce [20]
and 10% of [18] (Eqn. 48) .

F to furnish

2
{Cp(CO)ZFe[CH(SMe)(PthMe)]}SOBF whose spectral properties are very

Complex [20] can be methylated (Egn. 50) with Me0SO

~similar to those of [8] which was synthesized by an independent route
(Eqn. 37). Upon metathesis with [NHh]PF6 in acetone, it is converted

to [8] and the overall yield is 82%.

Me0SO,F
Cp(CO)ZFe[CH(SMe)(Pth)] >{Cp(C0) Fe [CH(SMe) (PPh Me)]}so F
[20] /
| - J [NH), IPF

(81 (50)

Attempts to obtain a phosphino carbene complex, Cp(CO)zFe[CH(Pth)]+.
by reacting [20] with AgBFh in the hope that Ag+ ion would abstract
MeS~ from the organometallic complex only led to an unisoluble material

with v(C0) absorptions (2027, 1976 cm-l) which are probably not those of
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2" 2

solution of [20] at room temperature produces no apparent reaction.

the expected product. Addition of anhydrous [Ph3C]BFh to a CH,Cl

Reaction of [4] with Primary

Phosphines

Analogous to the reaction of secondary phosphines, PhPH2 and

CyPH, also react with [4] to give {Cp(CO)zFe[CH(SMe)(PPth)]}CF3503,[16]

2
and {CP(CO)ZFG[CH(SMe)(PCyHZ)]}PF6,[I7], (after metathesis with KPF, in

31

CH3CN) respectively (Eqn. 51). The “ P NMR spectrum of [17] displays

a deceptive triplet and the Jpy coupling constant (470 Hz) is consis~

H
tent with the formulation in which both hydrogen atoms remain on the
phosphorus.92 Moreover, the phosphonium hydrogens of [16] énd [171

are shown by ]H NMR to be diastereotopic, because of the adjacent chiral
methine carbon which was illustrated in Figure 3 earlier. IR and

13

C NMR spectra of these complexes are similar to those of the 2°

phosphine adducts; these spectral data are summarized in Tables 7-8.

1) PRH
{Cp(CO)ZFe[CH(SMe)]}CF3SO3 -EY—REF§E>{CP(C0)2Fe[CH(SMe)(PHZR)]}X
(4]
(51)
R X %

[16] Ph CF3SO3 58

[171 cy PF6 52

Like their secondary phosphine analogs, [16] and [17] seem to

rearrange at 160°C in the solid state based on IR spectra (2058, 2015;
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2058, 2012 cm_],'respectively) of the reaction mixture. However, ]H
NMR spectra of these reaction products indicate them to be mixtures,

and they have not yet been positively identified.

Reaction of [4] with Pyridine

Much attention has been paid to the reactivity of carbene com-
plexes with 3° phosphines and phosphites; the analogous reactions with

94 reported the

tertiary amines are seldom reported. Kreissel et al.
_preparatfon of a nitrogen adduct by reacting (CO)SCr[C(OMe)Ph] and
Dabco (Eqri. 52). A similar reaction was also observed between quinu-
clidine and (CO)SW[C(OMe)Ph].95 Recently, Tam et al.2> obtained
Cp(PPh3)(N0)Re[CH2Pyr]+ from the reaction of the methylidene complex

with pyridine.

OMe
,,OMe .
(c,o)SCr=c\Ph + N(CHZ)BN ——>(co)5c|~—c—Ph (52)
N(CH2)3N

McCormick et al.73 observed the disproportibnation of [1] when it was
treated with a variety of tertiary amines; an amino adduct was pro-
posed as the key intermediate (Eqn. 53).

Me +

Cp(CO)ZFe[C(SMe)2]+ + R3N——> [Cp(co)lee-c—.-SMe] (53)

(n . ’ Ng3
Vv

Cp(CO)zFeC(SMe) 3 + ?
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Although, [4] does not appear to react with Dabco, at least to
an appreciable extent, it smoothly reacts with pyridine to afford a
bright-yellow solid upon recrystallization. Spectral data suggest
that this modestly moisture-sensitive material is
{Cp(CO)zFe[CH(SMe)(Pyr)]}CF3503,[21] (Eqn. 54). Compound [21] is hy-
drolyzed in wet organic solvent to [7] and [37]. The pathway which
leads to the formation of these products is probably éimilar to that

for the reaction of [4] and HZO; a more detailed discussion is de-

ferred to a later section.

{Cp(CO.)ZFe[CH(SMe) ]}cr=3so3 + c5H5N
[4]
A
Hy0
{Cp(co)zFe[CH(SMe)c5H5N]}cr3so3——>Cp(co)2FeCH25Me
[21] [7]
+ (54)
[Cp(C0)3Fe]CF3503
[37]

As in reaction 53, [21] decomposes slowly at room temperature in the
solid state or dried solvents to give mainly [2]. Since the process
is rather slow, [21] may be stored indefinitely under an N2 atmosphere
at -20°C.

The infrared spectrum (Table 9) of [21] in CH,C1, displays two
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strong v(CO) absorptions (2022, 1974 cm-]) which are in the region
characteristic of the PR3 adducts (Table 3). The methihe, FeCH, proton

resonance is at 6.5 § (Table 9) which is noticeably more deshielded than

the corresponding signal in the PR, adducts (Table 3). The same trend

3
is also observed in the 3¢ nMR spectrum (Table 10) where the FeCH
carbon is found at 64.5 PPM, which is at least 51 PPM downfield from
those of the phosphine and phosphite adducts (Table 4). These obser-
vations suggest that [21] is more electrophilic and should be more
susceptible to nucleophilic attack than the phosphorué analogs. That

notion is supported by the reaction of [21] with H,0 (Eqn. 54), whereas

[8] and [13b] tolerate H20.

Chemical Reactivity of [21]

Besides reacting with water, [21] also reacts smoothly with
various organic nucleophiles which have proven to Be effective in
reactions with the parent compound, [4]; however, the reactions with
[21] are slower than those with [4]. [21] reacts with 2 eqv. of
diethylamine and t-butylamine to afford {Cp(CO)zFe[CH(NEtZ)]}CF3SO3,[23],
and {Cp(CO)ZFe[CH(NHBut)]}CF3SO3,[28], respectively (Eqn. 55, Tables
9-10). Frequently, these reactions produce slightly higher yields
of the désired products and lésser amounts of [2] ( 10%). In contrast,
[2]) is one of the major products (25-35%) in the reactions of [4] and
amines under similar conditions. The advantages of [21] are also seen

in the reaction with NH3 which gives {Cp(CO)zFe[CH(NHZ)]}CF3503,[29],



Table 9. Selected IR and IH NMR data for pyridine adduct and secondary

amino carbene complexes

Complex ) iIR% (v(co), cm-')
{Cp(CO)ZFe[CH(SMe)(CSHSN)]}CF3503 [21] 2022s 1974 s
{Cp(CO)ZFe[CH(NMeZ)]}PF6 [221] 2049 s 2005 s
{Cp(CO)ZFe[CH(NEtZ)]}CF3503 [231] 2048 s 2004 s
{Cp(CO)zFe[CH(NHMe)]}PF6 [24] 2055 s 2007 s
{Cp(CO)zFe[CH(NHCy)]}CF3503 [25] 2054 s 2004 s
{Cp(CO)ZFe[CD(NHCy)]}CF3SO3 [26] 2053 s 2007 s
{Cp(CO)ZFe[CH(NHPri)]}PF6 (271 2053 s 2005 s
{cp(co)ZFe[CH(NHBut)]}CF3so3 [281] 2055 s 2007 s
{Cp(CO)ZFe[CH(NHZ)]}CF3SO3 [29] 2056 s 2010 s
{Cp(CO)(MeCN)Fe[CH(NHCy)]}CF3SO3 [36] 1994

a .
CHZCI2 solution.

bcnc13 solution.

cCD3CN solution.
dCD3C0CD3 solution.

e .
CDZCI2 solution.

*Exchanges with D20.
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Cp CH NH#* Other
5.10° 6.42 9.3V (d, J,,=5.49); 8.30 (t, J,=6.96);
7.92 (t, JHH=6.60)[Pyr], 1.92 (SMe)
Cc - . =
5.30 10.79 1.94 (d, JHH-2.6), 1.89(d, Jun 2.2) [NMe)
d — . —
5.59 11.30 3.99 (a, J=7.3)5 3.96 (q, J,,;=7.3) [NCH,]
147 (e, Jy=7.3)5 1.36 (t, Jy,=7.3)
[NCH,Me]
5.29°  10.69 16.90 3.33 (d, Jy,=3.3, NMe)
5.25%  10.76 10.55 3.52 (br); 1.56 (m)[Cy]
5.25° 11.63 (br)  3.49 (br); 1.56 (m)[Cy]
b - -
5.28 10.85 10.64 3.89 (h, J,,,=6.6, NCHMe,), 1.38 (d, J,=
6.6, NCHMe,) '
5.27b 10.83 10.63 1.42 (t-Bu)
5.33° 11.30 (m) 11.51 (m)
5.76°  11.62  11.84  3.56 (m); 1.88-1.26 (m)[Cyl, 2.35 (MeCN)




!

Table 10. ]'BC NMR data for the pyridine adduct and secondary amino car-
bene complexes in CD
Complex Carbene co Cp Others

2172 213.6 87.2 19.8 (SMe), 143.0; 141.9;

128.2 [Pyr]
213.2 64.5 (CH)

[22] 234.9 211.8 88.8 55.9; 47.7 [NMe]

[23] 232.4 211.7 88.9 58.8; 53.2 [NCH,]
14.4; 13.2 NCH,Me

[24] 238.6 211.2 88.6 45.8 (NMe)

[251] 235.1 211.3 88.8 69.9; 32.5; 25.3; 25.1 [Cy]

{26] 234.5 211.3 88.8 69.8; 32.5; 25.3; 25.1 [Cy]

(t, 23.44)°
[27] 234.5 211.5  88.8  63.3 (NCHMe,), 21.8
: (NCHMe,))

[281] 231.2 212.5 89.7 66.5 (Ngne3), 29.0
(NCMQ3)

1361° 243.9 216.1 83.7 133.7 (CN), 69.1; 32.1;
24.8; 24.6 [Cy]l, 5.1 (Me)

a
cocl,.
by

cd’
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that is more readily purified than that obtained from [4]. Compound

[29] has been synthesized from [4] and NH,, but only an oily product

3’
which could not be purified was obtained (Eqn. 55).

{Cp(CO)ZFe[CH(SMe)CSHSN]}CF SO, + NHRR'

3773
11 \

{Cp(CO)ZFe[CH(NRR')]}CF3SO3 (55)
R R! %
[23] Et Et 32

[28] t-Bu H L7

[29] H H 20

Although, extensive chemical reactivity studies on [2]] have not been
undertaken, the success in Equations 54-55 suggest that [21] may be

a useful and stable equivalent of [4].

Aminolysis of [4]

Reactions of amine nucleophiles with thioalkoxyl carbenes are

19,96-98 to lead to the replacement of the thioalkoxyl group by

known
an amino group, as illustrated in Equation 56. This reaction is un-
doubtedly facilitated by the good leaving ability of the thioalkoxyl

group. The amino thiocarbene products are stabilized by strong p-p

m-bonding between the nitrogen lone pair electrons and the ccarb Pz.
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SMe + SMe
HNMe2 .
Cp(CO)zFe=C ' ---—e>Cp(co)2Fe=c (56)
SMe - + NMe,
HSMe -

Secondary amines

When approximately one.eqv. of MeZNH is bubbled into a CHZCI2 solu-
tion containing [4], an immediate color change is apparent. Upon evapora-
4ﬁion of the solvent, a benzene extract anq a CHZCIZ-soluble portion are
obtained. The yellow air-sensitfve benzene portion displays IR and ]H
spectra characteristic of [2]. The yield of [2] ranges from 20 to 35%,
and is dependent upon the concentration ofvth]. The formation of [2]
is_probabiy fofmed in a secondary reaﬁtion between [h] and MeS~ which
is generated under the basic reaction conditions (Egqn. 57). An analogous
473 '

reaction has been demonstrate in a more sterically demanding and less

electrophilic dithioalkoxyl carbene system, [1] (Eqn. 58).

: 2NHR
L _ 2 -
{Cp(co)ZFe_[CH(SMe)]}CF3so3 :EE—Eff> {Cp(CO)ZFe[CH(NRZ)]}CF3SO34-MeS,
N 22 . [4]
(NH“)PF6
R = Me, Et . , 4

{Cp(CO)ZFe[CH(NRZ)]}PF6 Cp(CO)ZFeCH(SMe)z
[2]

(57)
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{Cp(co)zFe[c_(SMe)z]}PF6 + NaSMe-—-—£>Cp(CO)ZFeC(SMe)3 + NaPF6 (58)

(1]

The CHZCl2 fraction is metathesized with (NHA)PF6/acetone and readily re-

. crystallized from CH2C12/Et 0 to furnish pale yellow, air-stable crystals

2
of {Cp(CO)ZFe[CH(NMeZ)]}PF6,[22], (30%). The yiéld of [22] is diminished
sharply when more than one eqv. of MeZNH is used. The predominate
organometallic_product when a 5:1 amine/carbene ratio is utilized is
[Cp(CO)ZFe]Z,[3]; the organic product in this case was foqnd by its

'IR(v(CN): 1700 cm_]) and NMR spectra99 to be'[MezNCHNMeZ]CF3SO Complex

3°
t3] is seemingly produced from the further reaction of [22] with excess
amine; mechanistic aspects of this secondary reaction will be discussed
in detail Iafer.

Analogously, {Cp(CO)ZFe[CH(NEtz)]}CF3503,[23], may also be prepared,
- and the yields of [23] and [2] are comparable to those in the MeZNH reac-
tion (Eqn. 57). " An excess of’EtZNH al;o decreases the yield of the

desired complex, [23].

Spectral properties of [22] and [23] As mentioned previous]y,

a lone-pair-bearing heteroatom (N, 0, or S) is capable of p-p T-bonding
to the empty PZ orbital of ccarb’ resulting in a multiple-bond betweén

the CCarb and the heteroatom. This results in restricted rotation around

the C -N bond in amino carbene comblexes. This restricted rotation

carb

has been noted in the 'H spectrum of CIB(PEt Rh[CH(NMeZ)]lz, in which,

3)2

 two separate methyl signals were observed. These signals do not coalesce



151

even at a temperature of 150°C.

In the lH HMR spectrum of [22] (Table 9), the methyl region shows
two doublets. The_dodblets are assigned to two chemically and hag-
netically non-equivalent methyls (designated cis and trans in Figure 6)

~which are coupled differently to the carbene hydrogen.

) +
CD(CO)2Fe\ /Me cis
/C:N
H \Me trans

Figure 6. An illustration of [22]

Their non-equivalence is further supported by thé I3C spectrum (Table lb),
in which, two distinct methyl carbon signals are observed. Colleétively,
thesé’obsefvations caﬁ be explained by assuming there is restrjcted
rotation a;ound the ccarb-N bond (Figure 6). |

13

In the same'way, 1H and “C spectra of [23] exhibit two distinct

ethyl groups; its 'H spectrum is illustrated in Figure 7.

Primary amines

As shown in Equétion 59, nucleophilic displacement of a thiomethoxyl

group by a primary amine is a method for prebaring

[Cl(PPhB)2 19.

(CO)ZOS(CH(NHMe))]+ from its thiomethoxy! carbene precursor
Methylmercaptan was the other product. |



Cp

CH

e

[

i1 10 9 B8 7 6 S5 4 3 2

PPM

Figure 7. Ty spectrum of {Cp(CO)ZFe[CH(NEtZ)]}CF3503,'[23]. in
6
d

acetone

24l
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trans {CI(PPh3)2(CO)205[CH(SMe)]}SO3F

H,NMe (59)
Vv
MeSH + trans {c1(PPh3)2(co)20s[cn(NHMe)]}so3F

In the same way, we find that [4] reacts with a variety of amines,
MeNHZ, CyNHZ, i-PrNHz\and t-BuNH2 giving the corresponding amino carbene
complexes by displacing the thiomethoxide (Eqn. 60). Spectroscopic 'data

for the amino carbene complexes are summarized in Tables 9 and 10.

{Cp(co)zFe[cu(SMe)]}cr3so3-—ﬂzﬂﬁe>{cp(co)zre[CH(NHR)]}CF3so3 (60)
[4] +
cP(cb)ZCH(SMe)2
R % carbene [21
[24]  Me(PF ) 28
[25] Cy 35
[27] i-Pr 30
[28] t-Bu 38

Although the reactions are virtually complete upon addition of one eqv.
of the amine to [4], the yields of the amino carbenes are low (28-

38%), and the yields of the side product , [2], are comparable (30-35%) .
lronically, in an effort to improve the yields of the carbene complexes

in Equation 60 by using a 2-5 fold excess of the amine to compete for
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the available [4] with MeS-, lower or no yields of the desired amino car-
bene were obtained. In these cases, [2] and [3] are the other identified

organometallic products (Eqn. 61).

5 eqv. NHZCy
{Cp(CO)ZFe[CH(SMe) ]}CF3SO3 > [Cp(CO)zFe]Z
Cp(CO)ZFeCH(SMe)2
[2]
Spectral properties Infrared v(C0) bands of these primary amino

carbenes resemble those of [22] and [23] occurring as two strong ab-
sorptions in the regions of 2053-5 and 2004-7 cm-]; they are an average
of 20 cm-] lower than those in [4] (Table 2). The carbene hydrogen is
found in the general 'range 11.5-10 8 which is significantly more shielded,
at least 3.5 PPM, than the thiomethoxyl analog, [4] (Table 2).

13

Although, C data for [4] are not available for comparison, the

ccarb resonance of a more stable and relatively electron-richer analog,
{cp(co) (P(OPh)3)Fe[CH(SMe)]}CF3503,[ltli], is found at least 90 PPM down-
field from the Ccarb resonance in these amino carbene complexes._ In
summary, the decreases in carbonyl stretching frequencies together with
increases in shielding of the cd~hydrogen of the carbene ligand are
probably caused by greater p~p m-backbonding from X to the ccarb Pz

orbital when X is N as compared to the situation when X = S.

Stereochemistry of primary -amino secondary carbene complexes

The amino carbene complexes prepared from primary amines may exist in
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either of two isomerfc forms, that with the alkyl group syn to the
Cp(CO)ZFg moiety and that with it anti.(Fjgure.B). Restricted rota-
tion around the Ccarb_N bond would suggest that the-}somers should
interconvert sufficiently slow that Eoth isomers could be observed in
NMR spectra of the compounds. Both isome;s were observed for thé
trans [Cl(PEt3)2Pt(CH(NHR))]+ (R = p-tonl)]I carbene compound.

Cp(CO)-FRe R’ CpCO)sFe *
2 \/::N/ : Ne—n”
VAN -/

H
H \\R

SYN ANT|
Figure 8. Syn and anti isomers of Cp(CO)ZFe[CH(NHR)]+

in contrast, ]H and 13C NMR spectra of [24]-[28] show the presence
of only one isomer. Even with the sterically undemanding alkyl, [24],
(R = Me), only one isomer is observed; a single doublet caused by cou-
pling to the amino hydrogen is found. This doublet collapses to a
singlet when D20 is added to the solution.
3

“Syn-anti structural assignments based on NHCH coupling constants

have been made in other primary amino carbene ;omplexes]]. Since the NH
and CH resonances of these carbene complexes of iron are rather broad
and unresolved, the 3JNHCH coupling constants are not computed. Based
on steric arguments, the_anti isomer is likely to be the more stable;
indeed, the anti isomer is often the predominant species in other amino

11,19

hydrido carbene complexes Thus, we believe that the anti Isomer

is probably the isomer which is observed in the NMR spectra of solutions
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of complexes [24]-[28].

One might speculate on mechanisms which would lead to that isomer
only. By analogy with reactions of [4] with nucleophiles such as pyridine
and.phosphines, the primary amine probably first attacks the ccarb of
[4] to give the adduct. Two of the possible rotomers of the ‘adduct
are shown as st}uctufgs A and B in Scheme 3. In the presence of amine,
;ohe’ofbthe amino. protons of A and B may be removed by a second
m@le of amine. Such a mechanism has been prppose,d]00 for a key step in
the related reaction shown in Equation 62. This proton removal assists
the élimiﬁation of MeS™ thus affording the amino carbene. This form

of elimination is calléd an EchlOI mechanism.
(CO)SW[C(SMe)z] + HZNR——>(CO)SWCNR + 2HSMe : (62)

By and lafge, ElcB reactions proceed in an anti-periplanar fashion
where the ieaviﬁg'groub and the nucleophile achieve a dihedral angle of
180°. In that geometry, electron-electron.repulsion between the iqcoming
and leaving groups is minimized in tHe transition state. Removal of
.Ha by aminé in A is preferred over Hb, owing to the fact that the former
prﬁtoh is more accéssible to base. Thus, the neutral complex.C is the
predominate speéfes. The lone pair of electrons on the nitrogen of C
is now aiigned ahti-periplanér to the'leaVing group, MéS-, which would
facilitate MeS~ dfssociatiqn‘ This would lead to the anti complex.

Similarly, if Hb in;B were removed with base, the resulting D would
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>

/

b+

-NRHZHQ"//" -NRH 2H

J

Fe= CD(CO)2 Fe

Scheme 3
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ultimately yield the syn isomer. On steric grounds, structure B'is likely
to be present in lower concentration than A dué to severe repulsion be-
tween the Cp(CO)zFe and R moieties in rotomer B. Thus, structure A is
favored, and the anti isomer would be predicted to be the major product

in reaction 60, as observed.

The mechanistic arguments suggest that the anti isomer could be the
sole kinetic product. However, it is also possible that an iminoyl
formyl, Cp(CO)ZFe[CH=NR], is formed which isomerizes to the more thermo-
dynamically stable anti product. In fact, studies of the alkylation of
Cp(CO)ZFe[CH=NR] suggest that syn-anti interconversion in the iminoyl
formyl complexes does occur. Thys, it is not possible to say whether
stereospecific formation of the anti isomer of the amino carbene complex

occurs for kinetic or thermodynamic reasons.

Reaction of {Cp(CO)ZFe[CH(NHR)]}X with Base

The amino proton of primary amino secondary carbene complexes has
previously been found to undergo rapid exchange with DZOII’IS. At high
temperature, {(Cl)(PEt3)2Pt[CH(NHR)]}X]] was postulated to be in equi-
librium with its iminbyl formyl (Eqn. 63).

H+

|
c1—PIt—r\<__> Cl——PIt—-C + H (63)

L NHR L N—-R
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Although the Pka of this equilibrium has not yet been determined, this
equilibrium together with the DZO exchange results clearly indicates

1,13 and

the lability of the amino carbene proton. Indeed, amines
sodium hydroxide]9 have been shown to be effective for the deprotonation

reaction in Equation 64]9.

{0s(C1) [CH(NHMe) 1 (CO), (PPh,) , }CT0,

\\\?aOH (64)

> Os(Cl)(CHNMe)(CO)Z(PPh3)2 + NaCl0,,

HZNMe

-(H3NMe)CIOA

When [25] is allowed to react with a saturated NaOH-EtOH solution
in CH2C12, the deprotonation reaction occurs immediately upon addition
of the base to produce Cp(CO)zFe(CHNCy),[3Q], in 78% yield. Likewise,
[27]1 and [28] could also be deprotonated with the base, giving
Cp(CO)ZFe(CHNPri) ({311, 68%) and Cp(CO)ZFe(CHNBut) ([321, 76%), re-
spectively. These complexes [301-[32], are vulnerable to air oxidiza-
tion either in solution or solid; and revert to the trans isomer of the
carbene complexes in the presence of 5 eqv. of CF3SO3H in Et20. When
they are kept in an inert atmosphere at room temperature for a few hours,
a small amount of decomposition is apparent; the products of this de-
composition are [3), characterized by its IR spectrum, and the cor-

responding isocyanide (RNC), identified by its distinctive odor.

Whether the isocyanide is derived from a retro-metal-hydride-insertion
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reaction of Cp(CO)zFeH,[35], remains to be explored (Eqn. 65), though,

the reverse reaction has been known for sometimew"8 (Eqn. 66)]02.

Cp(CO)ZFe(CHNR) > Cp(CO)ZFeH + RNC
[35] (65)
R = Cy, i-Pr, t-Bu \
[Cp(CO) Fel,
[31
-65°C .
(CSMeS)ZZrHZ + MeNC ——————>(C5Me5)22r(H)(LHNMe) | (66)

Spectral properties of [30]-[32]

The infrared spectrum of [32] in hexane exhibits two v(CO) ab-

sorptions (2019, 1972 cm-]), and its T spectrum in C0013 shows the CH

resonance at a position upfield relative to [28], as expected for the
removal of H' from the ligand (Tables 11, 12). More importantly, the
]H NMR spectrum shows the presence of only one isomer. However, the IR
spectra of [30] and [31] display six and five carbonyl stretching bands,
respectively. The Cp resonance of [30] appears as a doublet while the

CH occurs as a doublet and singlet in its ]H NMR spectrum in CDCI The

1

3"
H spectrum of [31] exhibits the Cp and i-Pr groups as doublets, and the
CH appears as a singlet and doublet (Figure 9a). The CH doublet in
[31] is observed to collapse to a singlet when the methine resonance

region of the i-Pr group is simultaneously irradiated in a homonuclear

gated decoupled experiment (Figure 9b). Since two sets of CH and Cp
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Table 11. Selected IR data for iminoyl formyl complexes and their
carbene derivatives

Complex v(C0) cm-]

Cp(CO)ZFe(CHNCy)a . ' [30] 2030 s, 2021 s, 2013 s, 1982 sh,

1971 vs, 1963 s

Cp(CO)ZFe(CHNPri)a [31] 2028 sh, 2014 s, 1980 sh,

1971 s, 1963 s
’ Cp(CO)ZFe(CHNBut)a [32] 2019 s, 1972 vs

{Cp(CO)ZFe[CH(NMeCy)]}SO3Fb [33] 2049 s, 2003 s, 1998 sh

b

{Cp(CO)ZFe[CH(NMePri)]}SO3F [34] 2044 s, 2000 s

a
Hexane.

b
CH,C1, .



]H NMR data for iminoyl formyl and carbene complexes (&)

Table 12.
Comp lex CH
[301° Syn 10.15
Anti 10.18 (d by 79)
y » yy T
(3118 Syn 10.21
Anti 10.16 (d “J = 2.20)
) y Ny = 2
[32]2 Anti 10.22
133;° z 10. 84
E 11.03
[347° z 10.83
E 11.04
a
bcoc13.
CD.CN.
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Cp Other

L. .85 2.91 (m, Cy), 1.58 (m, Cy)

4.90 2.91 (m, Cy}, 1.58 (m, Cy)

L.94 3.20 (m, CHMe,), 1.17 (d, J,, =
6.23, Me)

4.91 3.20 (m, pﬂMez), 1.22 (d, Jyy =
6.23, Me)

4.84 1.10 (Me)

5.33 3.44 (d, JHH = 1.10, NMe), 3.8 (m);
1.6 (m)[Cy]

5.32, 3.48 (d, gy = 0.74, NMe)

5.31 - 3.8 (m); 1.6 (m)[Cy]

5.30 3.90 (h, Yy = 6.60, NCHMe,),
3.42 (d, Jyy = 0.74, NMe),
1.36 (d, Jun = 0.60, Ncnﬂez)

5.32 4.20 (h, Juy = 6.60, Ncy_MeZ),
3.45 (d, Jyy = 0.73 NMe) ,
1.32 (d, J,, = 6.60, NCHMe,)




Cp

PPM

Figure 9. lH spectrum of Cp(CO)ZFe[CH=NPr'],[3]], in CDCI3 - TMS

a) Expansion of the FeCH region
b) The FeCH region after grated decoupling of the NCH

h9l
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resonances are evident, at least two isomers are present in solutions

of [30] and [31]. However, it is not obvious why v(CO) absorptions are
so abundant relativg to the’]H signals, berhaps, two: or moré isomers are
rapidiy interconverting such that only their weighted-average spectrum
is observed in the NMR, but their individual IR spectra are observed be-

cause of the shorter time scale for IR measurements.

SYN | ANTI

Figure 10. R = i~Pr, t-Bu; CO gfoubs are omitted
for clarity
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As mentioned in the General Introduction section, on the basis of

MO calculations on carbene complexeSIOB-IOS

, the most favorable orienta-
tion of the carbene plane is perpendicular fo the Cp plane (see Figure
3-A in General Introduction). In principle, there are four possible
isomers for these iminoyl formy! complexes (Figure 10). We postulate
that rotetion around the Fe-C bond in the ihinoyl formyl complexes is
fastef than the ]H NMR time scale. Consequently, signals in the ]H
spectra of [30] and [31]could be the average of the syn (Figure 10-A, B)
and anti (Figure 10-C, D) pairs.

,Althoogh a few other complexes have been reported to be mixtures of
syn-anti isomerslg, structural assignments have.proven to be difficult
and ambiguous.A Despite numerous spudies of the structures of organic
iminoyl forﬁyls,‘reports of ]H NQR studies, especially long-range cou-
pling across the C=N double bond. b CHNCH R’ for the syn and anti
isomers, are few in number, This is because most of the |m|noyl formyls
exist predominantly in the anti configuration‘oe. 1t, has been semi-

empirically suggested that in allyl systems, H C=C(CH )X h
CHZ-CCH

3
coupling of a cnsoud is stronger than the transoid. 7 However, the
]H NMR Spectrum of N-methylmethylene imine, H2C=NCHj 08, was observed

to exhabvt an ABX pattern with QJ cis | identical to, QJ aos' Based on
) .

3
the allyic system, the lmnnoyl formyl, hydrogen of [30] in the antl
conformatlon must have a larger HJHH than the syn counterpart, thus, the

doublet is assigned to the isomer where the Cy is trans to the Cp(CO) Fe

moiety whereas the singlet ls'the syn isomer. Therefore, the anti:syn’
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rétio is 52:48. AnaIOQOUSIy, the anti:syn ratio for [31] is 58:42. It
is interesting to note that the anti isomer, which is thermodynamically
favoréd bésed on steric arguments, is the predominate conformer in both
cases, [30] and [31]. Thus, it is conéeivable that [32] may adopt'only
thc'anticonfdrmation, due to the bulkiness of the t-Bu group. The trend
in tﬁe anti to syn ratio for [30]-[32] is consistent with steric
hindrance arguments wach indicate the bulkiness of the R group decreases
in the order: _;-BLx>i—Pr >Cy. For [30], the anti:syn ratio is the
approaching the sfatiStical distribution (50:50) ; hénce, the Cy group
appears to exert litfle or no éteric effect on the anti/syn ratio.
Interestingly, both isomers of [30] and [31] are 6btained by de~-
protonation of their trans carbene precursors; thus, syn-anti isomerizé-
tion‘must be occurring after removal of the amino proton of the carbene.
Thét is, the iminoyl fo?myl ;omplex can rapidly isomerizé. This
phenoménon was observed in CI(PEt3)2Pt(CHNR) using variéble-temperature
'IH NMR techniques; hbwever, the barrier of this interconversion for the
syﬁ-anti isome}s was not‘determinedlg. An attempt was made to verify
" rapid isomerization in [3‘] by variable temperatdre ‘H NMR studies;
it wés found that within experimental error, the anti/syn isomeric ratio
remains constant frbm ambfent_temperature to 50°C.
Evidencé for syn-anti interconversion comés, hdwever, from alkyla~-
“tion studies. When an Et 6 sdlution ofv[3i] is quenched with a 6-fold

2

excess of Me0SO,F at room temperature, two isomers, E and Z, of

o2 .
{cp(C0). Fe[CH(NMePr')]}SO_F,[34], are apparent in the ]H spectrum of the
2 3
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solution. When .only three eqv. of Me0SO_F is added under-the same con-

2
- ditions, the E form increases to 95%. Tﬁese_experiments imply that one
iminoy! formyi isgméf of [31] (an;i) is more susceptiblé to methylation;
the Tesékreactive isomer apparentiy converts to the more reactive form
during fhelreaction.‘ Theée é]kylation reactions will be discussed in

detail shortly.

" Mechanistic discussion of the syn-anti interconversion in the

iminoyl formyl complexes’ 'Theoretical calculations on mechanisms of

;the ihte(conversion’of isomers of imines have béén performed. Two pri-
mary~mechanism§% C-N bond rotation and planar invérsioﬁ_of nitrogen

" (lateral shift mechanism) have been proposedlog. The rotational path-
way requires bohd breakjng and chafge separation in proceedingvto tHe
transition state (TS). Inversion involQes a linear intermediate which

loses its steredchemical integrity (Figure 11).

HooOH

-
1 Z—0O)+
X

H H
A4

M T

 ROTATION TS : INVI%I%SION_TS

Figure 11. Interconversion transition states
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SCF-LCAO-MO calculations for the simple methyleneimine (H2C=NH) showed
that the barrier for inversion (27.9 kcal/mol) is lower than that for
rotation by a factor of 2 (57.5 kcal/mol). Therefore, the inversion
pathway appears to be more favorable for the syn-anti topomerization for

simple imines. When applied to the iminoyl formyl complexes, the lateral

shift mechanism is as shown in Scheme 4.

R;\ H Fe Fé\Y{,H

T T i
> < >
NS NS .
R | R
s
ANTI SYN

Fe= Cp(C 0)2 Fe

Scheme 4

This mechanism offers an explénation for the ready isomerization of
iminoyl formyl complexes; [30] and [31], and the very slow isomeriza~
tion of their carbene analogs. If a rotation mechanism.were involved

in the isomerizatidn,.one would expect the carbene complexes to isomerize
more rapidly than the iminoyl formyls since the C-N bond of a carbene
(I)Z(CNtolyI)(PPh3)(CO)Ru[CH(NMe(tonl))]IS is known to be longer than
its iminoyl formylvanalogZI. In the inversion mechanism, the C-N bond

is not broken in the transition state; thus, the increase in the C-N

bond strength in the iminoyl formyl complex is probably not an important
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factor in influencing the overall activation energy. It has also been
demonstrated that Lewis acids and protic solvents are capable of retard-

109. This retardqtion

ing the syn-anti topomerization of organic imines
was rationalized by noting that the lone pafr electrons which are needed
for the inversion process are bonded by the acid or proton. Thus, a
protonated or alkylated iminoyl formyl complex, is unable to undergo

the lateral shifting motion. The C-N bond rotation is the other viable
alternative pathway for the syn-anti conversion, but as mentioned pre-
viously it has a higher energy barrier. Thus, one would expect, and it

is observed, that the iminoyl formyl complexes, [30] and [31], are more

fluxional than their carbene precursors, {25] and [27].

Methylation of the Iminoyl

Formyl Complexes

The methylation of the nitrogen in iminoyl formyl complexes with

Mel or (Me)X is facile, giving the corresponding dialkylamino carbene

15,16

compounds The previously reported methylation of a platinum com-

pound is illustrated in Equation 67.

lL /H L /H+
Cl— Plt—c\ + Me,50,—=C1—Pt—C ' (67)
L NR L NMe (R)
L = PEt,, R = p-tolyl

3’
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When an ether solution of [30] reacts with MeOSOzF, a yellow pre-
cipitate is formed and the reaction is complete within 5 min; methyl
iodide fails to produce a precipitate under similar conditions. IR and
]H spectra (Tables 11, 12) of the methylated product show the isolated
solid to be a mixture of isomeric carbene compounds,

{Cp(CO)zFe[CH(NMe(Cy))]}SO3F,[33], and the product ratio is dependent

on the concentration of the methylating agent (Eqn. 68).

Cp(CO)ZFe(CHNR) + Me0SO F-——€>{Cp(C0)2Fe[CH(NMe(R))]}SO3F

E/Z (68)

2

=
]

Cy [33]
i-Pr [34]

With a [36]:Me0$02F ratio of 1:10, two carbene hydrogen (11.03,
10.84 §) and three Cp ring proton (5.328, 5.316, 5.295 §) resonances are
observéd.‘ Integration of the three Cp absorptions shows the presence
of three isomers in the ratio 74:10:16, respectively (Figure 12-A).

When the iminoyl formyl:MeOSOzF ratio is reduced to 1:6, the Cp ring
ratio changes to 17:34:39 (Figure 12-B). Finally, with a ratio of 1:3,
the result is 10:71:19 (Figure 12-C) (Table 13).

In these experiments, the carbene hydrogen ratio varies from 26:74,
83.17 to 90:10, respectively (Figure 12). In principle, four products
are possible in this reaction (Figure 13). However, it is clear that
only three are obtained, and the CH(11.03 &) and Cp(5.316, 5.295 §)

resonances belong to a pair of isomers whereas CH(10.84 §) and
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Fo

Figure 12. ]H spectra of {Cp(CO)Z'Fe[CH(NMeCy)]}SOBF,[33]; Cy is omitted.

[30]/Me0$02F ratio: a (1:10), b (1:6), c (1:3)

2Ll
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Cp(5.328 8) belong to one isomer of the other possible isomeric pair.

Fe C E M
\(\C&N/ ’ \/e\%‘—— /"
V. AN
H Me H Cy
B D
(2) | (E)

Figdre 13. €O groups are omitted for clarity
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As mentioned previously, hJcis hydrogen coupling constants in the

allyic system are larger than th‘ Thus, the lone isomer is as-

rans’

4

signed structure B in Figure 13 with J 1.10 Hz. This assignment

CHNMe
is preferred over structure A for steric reasons; since A is too sterical-
Iy strained and should be the least favored isomer. Thus, when a solu-
tion of [30] is quenched with a large excess of MeOSOzF, the product dis-
tribution presumably gives a better indication of the thermodynamic dis-
tribution of isomers»of [30] than when a smaller amount of MeOSOZF is
used. Little or no compound A is observed, as expected. For the re-

L

maining isomeric pair, Figure 13-C, D, the J coupling constant

CHNMe
is smaller (0.74 Hz) which is consistent with an E configuration. As the
MeOSOZF concentration decreases, the ratio of the Cp ring areas of this
pair (5.316, 5.295 §) increases. This clearly suggests one of the anti
isomers of [30] is more reactive toward the incoming methyl cation.
Models also show that the nitrogen lone pair in structure D of Figure

10 is more accessible to Me+ than it is in C; hence, structure D (5.316
8) in Figure 13 is probably the predominant product at low.MeOSOZF con-
ditions. It is worth mentioning that structures C and D in Figure 10

are related by a Fe-C bond rotation and are produced in approximately
equal amounts using the high MeOSOZF concentration as shown by the prod-
uct distribution in Figure 12-A, B. The lowest Me+ concentration (3-fold
excess) gives.structure D in Figure 13 almost stereospecifically (Figure

12-C). Therefore, Fe-C bond rotation interconverting structures 10-C

and D must be occurring during the alkylation, and the rate must be
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faster than that of the alkylation of strﬁcture 10-D and faster still
than the alkylation of structure 10-C at the lowest MeOSOZF concentra-
tion. These relative rates would give predominantiy structure 13-D at
low MeOSOiF concentrations. These results lend credence to our earlier
assumption of relatively rapid Fe~C bond rotation in [30] which allows
the interconversions of the two observed syn and anti isomers.

The E:Z product ratio of the carbeﬁe complex [33] also varies with
the MeOSOzF concentration. Structures 10-C and D which give rise to the
E isomers are evidently more reactive toward the alkylating agent than
structure 10~B, although there is no obvious reason for these differences
in rates. The changes in the E:Z product distribution undoubtedly re-
flect the ongoing isomerization between the syn and anti isomers of [30].

It is worth noting that although the anti:syn ratio of [30] is
52:48, it gives [33] with an E:Z ratio of 26:74 upon methylation with
10 eqv. of MeOSOzF; Since the alkylation reaction was carried out in
diethylether while the anti:syn ratio of [30] was determined in CDCI3,
the change in isomeric distribution may result from a different distribu-
tion of [30] in the different solvents. Such a change in isomeric dis-
tribution has been noted in the Cl(PEt3)3Pt(CHNR) system]]. Indeed,
when the alkylation is carried out in CHCI3 with a 10-fold excess of
MeOSOzF, the E:Z ratio becomes 68:32 (as compared with 26:74 in EtZO).
Interestingly, the major E isomeric product in the above reaction in
CHC1, is structure 13-C (64%) which was found to be formed in only a

3
slightly greater amount. than 13-D when the alkylation was carried out



176

with a 10-fold excess of MeOSOZF in ether solvent (Table 13). These
results suggest that structure 10-C is sterically more favorable than
D since the nitrogen lone electron pair is directed away from the elec-

tron rich CO groups.

Table 13. Methylation results for Cp(CO)ZFe[CH=NR]

lsomeric

R Complex/MeOSOzF Solvent E/Z carbene products (%)2
A B ¢ D

Cy 1:10 Et,0  26:74 0 74 16 10
Cy 1:10 cHC1 68:32 0 32 bk l
Cy 1:6 Et,0 83:17 0 17 39 34
Cy 1:3 Et20 90: 10 0 10 19 71
i-Pr 1:6 Et20 ' 62:38 - - - -
i-Pr 1:3 Et,0 95:5 - - - -

%These isomers are depicted in Figure 13.

When 6 eqv. of MeOSOZF react with [31] in Et_O, a mixture of E and

2
Z isomers of [34] (Eqn. 68) is obtained. However, only two isomeric
carbene complexes are observed in the ]H NMR spectrum of the product
(Figure 14). Presumably, only one of each of the isomeric pairs exists
in solution due to steric crowdfng. Since the hJCHNMe of both isomers
only:dfffer by 0.01 Hz, which is within the resolution limits of the

instrument, structural assignments based on these values are inappro-

priate. Following the assignments made for the isomers of [33], the
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Cp
Me
NMe
FeCH
I A‘J NCH
iIT 10 5 8 7 6 & 34 I
PPM

Figure 14. " spectrum of {Cp(CO)ZFe[CH(NMePri)]}SO3F,[310],

in CD3CN with [3]]/Me0$02

F ratio 1:6
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carbene hydrogen of the E isomer of [34] appears at lower field than that
in the Z isomer; thus, the E:Z ratio for [34) would be 62:38. The as-
signment is believed to be reliable since it is consistent with the trend
observed in [33]; namely, the E isomer of [34] is the predominant product
(95%) when 3 eqv. of Me0SO,F is used (Table 13). .

In summary, [30] and [31] are believed to undergo syn-anti inter-
conversion as well as Fe-C rotation at ambient temperature. Methylation
of [30] and [31] gives up to three isomers of [33] and [34] depending
upon the concentration of.MeOSOZF and the relative rates of syn-anti

interconversion and Fe-C bond rotation.

Hydrolysis of Cp(CO)zFe[CH=NPr']

Organic aldimines are known to hydrolyze to aldehydes and amines
)IIO. An attempt to react [31] with water in CH,Cl, at room

temperature, in the hope of obtaining the metal formyl! compound, re-

(Egn. 69

sulted in isolation of the starting material (Eqn. 70). This clearly
demonstrates the stability of [31]; more vigorous conditions for this

reaction have not been explored.

R
=NR! — !
C=NR' + H,0 Z—> RCHO + R'NH, (69)
H
Cp(CO_)zFe[CH=NPr'] + Hy0 —¥%—2>Cp(C0) ,FeCHO + HZNPr' (70)

311
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Decarbonylation of [25]

Trimethylamineoxide has been used for the decarbonylation of metal

m-113

carbonyl complexes The reaction is often rapid, and the condi-

tions are milder than photolytic or thermolytic methods of removing CO

(Eqn. 7])]]3.

LMo(co)5 + L+ Me N0~—-€>cis-L2Mo(C0)h + co2 + NMe (71)

3 3

A dichlorohethane solution of [25] is titrated with Me3N0/MeCN.
The decarbonylation reaction is complete as soon as 1.2 eqv. of the
amine oxide is introduced; {Cp(CO)(MeCN)Fe[CH(NHCy)]}CFBSOB,[36], is
obtained (93%). The identical product,[361, is isolated (85%) from

an acetonitrile solution of [25] after it is irradiated with 254 nm

light for 2 hours (Eqn. 72).

_{Cp(co)zFe[cu(NHcy)]}CF3so3
| [25]
Me ;NO/MeCN (72)
\
roieen > 1Cp(C0) (MeCN) Fe [CH(NHCY) 1}CF 550,
[36]

Compound [36] is an air-stable yellow crystalline material which
has its v(CO) band at 1994 cm-]; the NH proton is much less labile than
that in the parent compound, [25], and exchanges with DiO in one hour

(Tables 9, 10) in‘CDClB.
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Reactions of

{Cp(CO)ZFe[CH(NHR)]}CF3SO3 with NH,R!

As outlined earlier, the reaction of [4] with excess cyclohexylamine
gives [Cp(CO)zFe]Z,[B], and (CyNHCHNHcy)CF3503. These products undoubted-
ly result from the reaction of the amine and [25] which is generated under

the reaction conditions. This reaction was studied in greater detail

(Eqn. 73).

{Cp(CO)ZFe[CH(NHCy)]}CF3SO + NH,Cy —=> Cp(C0) ,FeH

3
[25] [35] (73)
+

(CyNHCHNHCy)CF3803

The reaction of 5 eqv. of CyNH2 with 1 eqv. of [25] in CHZCI2
solvenf at room temperature was monitored by scanning the 2100-1600 cm
region at various time intervals. After 30 min of mixing, 75% of [25]
was consumed. The presence of NNidicyclohexyl foramidinium (V(CN) =
1712 cm-]) and new v(CO) absorptions (2011 s, 1952 vs) are evident; how~
ever, [Cp(CO)zFe]2 is absent at this stage. The organometallic product
is very volatile and is isolated along with the reaction solvent by
vacuum distillation. This pale red, air-sensitive solution exhibits
IR bands identical to those noted above; in hexane, these V(C0) ab-
sorptions occur at 2020, 1965. This spectrum is identical to that of
Sn authentic sample of Cp(CO)ZFeH synthesized from Cp(CO)ZFeCl and

114
AR

Na(BH It is known that Cp(CO)ZFeH decomposes to [Cp(CO)ZFe]ZIIA,
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which explains the origin of the dimer in reaction 61. The
(CyNHCHNHCy)CF3SO3 product is isolated as a white solid whose proton
NMR and IR spectra are in accord with an authentic sample prepared from
the reaction of cyclohexylamine and cyclohexylisocyanide (Eqn. 74)1‘5.

Interestingly, the foramidinium compound decomposes to its foramidine

Cul _
CyNC + excess CyNHZ——;EE;§>GyN—CHNHCy
H
J CF,CO,H (74)
(CYNHCHNHCy)CF3503

which is reprotonated under the mass spectrometry conditions to give
(CyNHCHNHCy)+ with a parent peak at m/e 209]]6-117.

The hydride complex Cp(CO)ZFeH is the sole organometallic product
in reaction 73. Since the hydrogen in thisAcomplex could originate from
the carbene hydrogen or the amine hydrogené, the carbene hydroggen
was labeled with deuterium,[26], and this compound was allowed to react
with 5 eqv. of NHZCy in CHZCIZ. The crude organic product was analyzed
by mass spec. and found to have a parent peak at m/e 210. This product
also reacts with n-BuLi to give NNidicyclohexylforamidine, whose ]H NMR
spectrum shows no methine proton resonance. These results indicate that
the carbene hydrogen is not transferred to the iron, thus, the hydrogen
in Cp(CO)ZFeH is acquired from the amine.

Reéaction 73 may occur by several possible mechanisms. One involves

initial removal of the NH proton from Cp(CO)ZFe[CH(NHR)]+; the resulting
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+
NHR " ~NHR

Fe—C * RNH, —> Fe—CH (A)
NH | \NHR
H/
a
RNH»>
L VIR
. : _NHR N
FeH + RNHCHNHR Fe——_CQ + RNHy
NHR
(B)

Vv

FeH -+ RNHCHNR

RNH3'

v

RNHy + RNHCHNHR'

Fe=Cp(CO),Fe

Scheme 5
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‘Cp(QO)ZFe(CHNR) could then react with additional amine to form the
products. Thus, the reaction of Cp(CO)ZFe(CHNR) with excess of RNH,
was carried out. The proton was removed from [25] by treating it with
a saturated MaOH/EtOH solution. The solvent was evaporated and the re-
sulting iminoyl formyl complex, [30], was then allowed to react with

5 eqv. of CyNH2 in CHZCI2 at room temperature. IR spectra of the solu-
tion showed that no reaction had taken pléce after a period of a half
hour. However, when 5 eqv. of CF3SO§iwereintroduced into the mixture,
progressive growth of IR bands for Cp(CO)ZFeH and the foramidinium ion
occurred. Thus, removal of the NH proton inhibits the reaction, and
the iminoyl formyl complex is an unlikely reaction intermediate leading
to the products in Equation 73.

To summarize thesé and other pertinent results, we have proposed
two pathways that may be involved in reaction 73. Initially, an amine
attack upon the ccérb yields_A in Scheme 5. Under exceés amine reaction
conditions, A is deprotonated to give B as illustrated by path a. Sub-
sequent B-hydrogen elimination affords Cp(CO)ZFeH and thé foramidine,
which is fhen reprotonated to give the observed cationic product. Al-
ternatively, A may undergo a direct B-hydrogen elimination as depicted
in path b, to furnish the observed products. Both paths a and b are
indistinguishable Based on our earlier experiments. However, in the
reaction of [22] and MezNH, though much slower than reaction 73 under

the same conditions, [3], [35] and (MezNCHNMeZ)CF3S are produced after

0,

one hour of reaction. The organic product is identified by its
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1

IR(v(CN) 1700 cm']), and its 'H NMR spectrum is the same as that re-

ported for NNLtetramethylforamidinium99. The fact that this reaction
occurs suggests that path a is not the mechanism for reaction 73 since
[22] lacks an NH proton for the necessary depfotonation step. In sum-
mary, path b in Scheme 5 istthe more proBable mechanism for reaction
73.

Other primary amines also react with [25] to give [35] and a mix-
ture of foramidinium compounds. For instance, the reaction of NHZMe
with [25] produces NN'methylcyclohexyl foramidinium, NN'dimethyl
foramidinium and a small amount of NNidicyclohexyl foramidinium ions.

The relative yields and identifications were established by their

mass spectra (Eqn. 75).

{Cp(CO)zFe[CH(NHCy)]}CF350 + H NMe —> Cp(CO)ZFeH

3 2
[25] [351] (75)
+
MeNH2

(CyNHCHNHCy)CF3503 —_— (RNHCHNHR')CF3SO3
R R
Me Cy
Cy Cy
Me Me

The NN.dimethyl and NN'dicyclohexyl foramidinium compounds are
probably the product of alkyl exchange reactions of the NN'methyl-
cyclohexyl foramidinium and free amines. Indeed, NN*dicyclohexyl

foramidinium readily reacts with MeHN2 in CH2012 for % hour at room
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temperature to give all of the three products (Eqn. 75). The reactivity
trend for the reaction of [25] and primary amines is inverse]y propor-
tional to the steric hindrance of the amine. That is, methylamine
reacts faster than cyclohexylamine which is still faster than t-butyl-
amine. The importance of thé size of the amine hints that some sort

of nucleophilic attack mechanism is operating. These results certainly
lend credence to our earlier assumption that amine attack on the ccarb
of the amino carbene comblexes is the initial, and perhaps rate-de-

termining, step in these reactions (Scheme 5).

Synthesis of {Cp(CO)ZFe[CH(NHZ)]}CF3503

Despite the large number of examples of nucleophilic substitu-

tion reactions in metal carbene ligands with alkylamines, the cor-

118-120

responding reaction wiith ammonia is rare Fischer et al. found

that an acetonitrile solution saturated with NH3 reacted with

118

Cr(CO)S[C(OMe)Ph] to yield Cr(CO)S[C(Ph)NHZ]. When MeCN-NH, is

3

added dropwise to a CHZCI2 solution of [4], an intractable oil show-

ing v(CO) absorptions at 2056 and 2010 cm-] is obtained (Eqn. 76).

The oil is presumed to be {Cp(CO)zFe[CH(NHZ)]}CF3503,[29]. By bubbling
NH3 gas directly into a CH2012 solution bf [4], a similar oily product
is obtained. However, {Cp(CO)zFe[CH(SMe)pyr]}CFBSOB,[21], readi ly
reacts with gaseous NH3 to give [29]. Moreover, the product from this
reaction can be recrystallized from CHZCIZ-EtZO to yield pale yellow,
air-stable [29] in 20% yield (Eqn. 55). |Its IR spectrum is identical
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to that obtained in the reaction of [4] with NH3 noted above.

(CO)SCP[C(Me)NHZ] has been shown by an "W variable temperature
NMR study to have a substantial rotational barrier about the C-N
bond 2!, Unfortunately, the T spectrum of [29] displays an unre-

soluable and complex pattern in the NH and CH regions (Tables 9 and

10).

{Cp(CO)ZFe[CH(SMe)]}CF3SO + MEEE_:_EESeiCp(CO)ZFe[CH(NHZ)]}CF3SO

3 or NH3 3
(4 ' [29]
+
Cp(CO)zFeCH(SMe)Z (76)
[2]

Reaction of {Cp(CO)ZFe[CH(SMe)]}CF3503

with HZO

Compound [4] is very sensitive to moisture and decomposes in water
on contact. Upon closer study, it was found that [4] reacts with
doubly-distilled, degassed water producing [Cp(C0)3Fe]CF3803,[37], and
27

a previously™’ uncharacterized product, Cp(CO)ZFeCHZSMe,[7], which is

identified by comparing its IR and ]H NMR spectra with those of an
authentic sample synthesized by the reaction of [Cp(CO)ZFe]- and
CICHZSMe63. The product ratio of [37]:[7] is 1:1. Moreover, MeSH

is identified by GC to be the major organic product in that reaction

(Eqn. 77).



187

H.0
{(€p(C0) ,Fe[CH(SMe) 1CF 550, 2 >Cp(C0)  FeCH, SMe NG )
[4] 7]
+
[cp(co) 3Fe]CF3SO3
[37]
+
MeSH

In Qnderstanding the mechanism of reaction 77, it is necessary to
know the origin of the additional H in product [7]. Conceivably, [7]
is the product of [4] and a hydride donor, presumably, H20 or a deriva-
tive of [4]. When deuterium labelled Cp(CO)ZFe[CD(SMe)]+ is used in
the reaction with HZO’ only the di-deuterated Cp(CO)ZFeCDZSMe is formed.
This was established from the mass spectrum of this product. Although
the parent ion is missing, two intense peaks, m/e 212, 184 which

+ +
correspond to M - CO and M - 2€0, respectively, are characteristic

of Cp(CO)ZFeCDZSMe. Thus, the hydride in [7] stems from [4], not H,0.

Mechanistic possibilities for reaction 77

Nucleophilic attack by H20 on the Cca of [4] is likely to be

rb
the initial step in reaction 77 (Scheme 6). Subsequent loss of MeSH

gives a hydroxy carbene. Although intermediate A in Scheme 6 has not
been isolated nor observed in reaction 77, a similar hydroxy alkyl

2

carbene, Cp(CO)zFe[C(OH)(Me)]+ 12 , has been synthesized and shown to

be in equilibrium with its acy! analog (Eqn. 78). Moreover,
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[Fe——%—HJ
O
(B) |
[4]
Fe CH,SMe + FeCO’

(7] [37]

Fe=Cp(CO),Fe

Scheme 6
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Cp(NO)(PPh3)ReCH023 is reversibly protonated to its hydroxy carbene

form, Cp(NO)(PPh3)Re[CH(0H)]+; thus, it is conceived that A could

19

coexist with the formyl complex B. Collins and Roper ” reported that

H,y0 reacted with (PPh3)2(C0)2(Cl)Os[CH(SMe)]+ to yield a stable formyl

complex, (PPh3)2(C0)2(Cl)OsCH0.
Ht 0
- — —C —M
Cp(CO)ZFe—Q\ <5_:F,_. Cp(CO)zFe C—Me (78)
Me '

Although intermediate B was not detected by means of low tempera-
ture (-40°C) ]H NMR in CDZCIZ, it might be expected to be unstable and
rapidly react further. Metal formyis have been shown to be excellent
hydride donors?. Fﬁr instance23, Cp(NO)(PPh3)ReCH0 readily transfers

its H to Cp(NO)(PPhS)ReCH * to afford Cp(NO)(PPhB)ReCH and

2 3
Cp(NO)(PPh3)ReC0+. Also, hydride transfer very similar to that in
Scheme 6 has been postulatedZA in the reaction of Cp(CO)zFe[CH(OMe)]+

and | (Egn. 79). Thus, B (Scheme 6) probably transfers a hydride to

{Cp(CO)zFe[CH(OMe)]}PF6 > [Cp(CO)zFeCHO] (79)
[46] \/[46]
Cp(CO) ,FeCH, OMe
[47]
+

‘[Cp(C0)3Fe]PF6
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[4] to furnish the observed products. In that manner, the product ratio

of [37]:[7] is expected to be 1:1, as observed.
Reaction of 41 with<Me0H

In an effort to replace the MeS  group in [4] with methoxide to
form Cp(CO)zFe[CH(OMe)]+, [4] reacted with MeOH. Instead of the
expected product, {37] and [7] were obtained. The reaction is rapid
when a 100-fold excess of methanol is used; the total yield of both
products is 88%, and the [37]):[7] product ratio is approximately 60:40
(Egn. 77). An examination of the gas phase of the reactién by GC re-
veals the presence of MeSH and CHA, thqugﬁ, the latter was not posi~-
tively verified by MS. When only 1-5 eqv. of MeOH is used for the
reaction in CHZCIZ, no rea;tion is observed. Even when a 100-fold
excess of PhCHZOH is allowed to react wfth [4], no reaction is ob-
served. Thus, it is conceivable that HéO is the primary reactant in
the methanolysis reaction which then affords [37] and [7] (Eqn. 79),
in spite of the careful drying of MeOH with Mg/lz. The different
product distribution of [37]:[7] in the methanolysis (60:40) vs
hydrolysis (1:1) may result from a secondary reaction between [4] and
MeOH, which gives [37] and CHM under the reaction conditions, possibly
via [46] (Eqn. 80). Complex [46] was previously reportedzlI and known
to be stable in dry CH_NO_, and CH_C1 but it rapidly decomposed in

372 272

wet solvents to Cp(CO)zFeCH and [37]. Its stability in MeOH was not

3

mentioned, so it is not possible to draw any firm conclusions about

the secondary reaction between [4] and MeOH (Eqn. 80).
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Cp(C0) jFe [CH(SHe) T + MeOH/HZO-—>[Cp(CO)2Fe [CH (OMe) ]*] + [371 + (7]

4] [46] 4o%  L40%
-CH
L
v (80).
[37]
20%

Reaction of

{Cp(CO)zFe[CH(SMe)]}CFBSO3 with CH N,

Diazomethane has been shown to attack the ccarb of terminal carbene

123

complexes to produce olefins or an nz—olefin complex]24. The com-

plex, (CO)SW[C(OMe)R] was found to react rapidly with CH to liberate

2N2
free olefin and the W(CO)5 moiety (Eqn. 81). It was postulated that the
initial diazomethane attack‘was on the ccarb' Likewise, an iron com-

plex reacted with CH2N2 to yield the corresponding nﬁdiene complexlzu_

(Eqn. 82). The slight variation in the latter reaction may be chiefly

due to the stability of the iron diene product.

OMe /o“e
(co)5w=c\ + CH N —> [(co) Sw(‘\—-R ] —> 'w(co) 5“ (81)
R CH,N,
R = Ph, Me | CH,=C (R) OMe
+
N

2
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R OMe
OMe
44!\1Y’ CH N, ;/ \g (82)

N\ > “\/

Fe(co)3 Fe(co)3
CHN,,
{Cp(CO)zFe[CH(SMe)]}CF3SO3 -——-—-:>{cp(co)2Fe[s(Me)(CH=CH2)]}CF3503
(4] , [38]
+ (83)
Ny

When CHZNEEtZO is added to a CHZCI2 solution of [4], gas evolu-

tion (presumably‘Nz) is apparent; the yellow carbene solution turns
deep orange, and two v(CO0) absorptions (2063, 2020 cm-‘) are noted.
After 30 min of reaction, the solution changes to light orange with

a slight shift in the v(C0) bands (2062, 2019 cm '). After workup,
76% of {Cp(CO)zFe[SMe(CH=CH2)]}CF3SO3,[38], is isolated; due to its
reluctance to crystallize, only a small amount of needle-like red
crystals (10%) were obtained (Eqn. 83); they have IR bands identical
to those in the solution mixture. An ]H NMR spectrum of [38] reveals

that the vinyl protons display an ABX pattern and are shifted to lower

field relative to those in the corresponding free olefin, MeSCH=CH2]25.

In contrast to the tendency of olefins to form nz—olefinic comp lexes

of iron]26, the olefinic ligand in [38] is bonded to the iron through

68,127,128

the sulfur This structural assignment is consistent with

its I3C spectrum which shows the vinyl carbons at 130.8 and 124.1 PPM
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129

which are characteristic of unsatuated carbons , whereas the cor-

responding carbons of nz-olefinic complexes of iron often occur below
100 PPM'28,

Presumably, nucleophilic attack upon the ccarb of [4], elimina-
tion of N2 producing the nz-fhiomethoxyl ethylene complex, then re-
arrangement to the S-adduct is the reaction sequence which leads to
[38]. The existence of the nz-olefin complex is uncertain since the

deep orange transient species, which is most likely to be this

postulated intermediate, has not been isolated nor fully characterized.

Synthesis of {Cp(co)(L)Fe[CH(SMe)]}CF3503,

L = PPh P(0Ph)3

3’
The replacement of a carbonyl ligand in an inherently unstable
organometallic carbene complex with a better o-donor ligand, such as
a tertiary phosphine or phosphite, increases the stability of the re-
sulting carbene derivative. Very often, the difference is remarkable.
As mentioned earlier, [4] decomposes rapidly in a wet environment.
Thus, we explored the possibility of synthesizing mono-substituted
phosphine and phosphite derivatives of [4] in the hope that these
comp lexes would be more manageable.
It has been shown that [1] is readily decarbonylated in acetoni-

130

trile under photolytic conditions , Yielding a stable deep red com-

plex, {Cp(CO)(MeCN)Fe[C(SMe)Z]}PFﬁ. The acetonitrile ligand in this

complex may simply be replaced by PPh3

{Cp(CO)(PPhB)Fe[C(SMe)Z]}PFG,[39], and {Cp(CO)(P(OPh%?Fe[C(SMe)Z]}PF6,

or P(OPh)3 to afford
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[42], respectively (Eqn. 84).

254 nm

{Cp(CO)ZFe[C(SMe)Z]}PFG-—EEEE—>{Cp(CO)(MeCN)Fé[C(SMe)z]}PFe (84)
(1]
L
L
[39] PPh, {cp(co) (L) Fe[C(sMe) ,1IPF,

[42] P(OPh)3,

However, when [4] is photolyzed with 254 nm UV light in acetoni~
trile for an hour, decomposition is apparent, and the decomposition
product has not been characterized. An attempt to prepare

Cp(CO)(MéCN)Fe[CH(SMe)]+ using a milder decarbonylating agent,

Me Nolll-ll3

3
ing a carbonyl ligand from [1] and [25], only led to an unisolable, com=- -

, which has been demonstrated to be effective in liberat-

plex with v(C0) bands at 2012, 1956 cm ' in CH,CI,.

Because of the unavailability of {Cp(CO)(MeCN)Fe[CH(SMe)]}CF3503,
attention turned to [39] and [42] as precursors. Like [1], both com-
plexes smoothly react with (EtBBH)Li to provide Cp(CO)(PPhB)FeCH(SMe)Z,
[401, (62%) and Cp(CO)(P(OPh)3)FeCH(SMe)2,[43], (76%) respectively. In
contrast, Li[Al(OBut)3H] fails to react with efther [39] or [42]. Com-
plexes [40] and [43] are isolated as oily substances which are mildly
susceptible to air oxidization; their IR data are summarized in Table
‘14. The addition of CF,SOH to an Et

3773 2
oily {Cp(co)(PPh3)Fe[CH(SMe)]}CFSSOB,[hll, (71%). Likewise,

0 solution of [40], gives an



Table 14. IR and 'H NMR data for the Cp(CO)LFe[CH(SMe)Z]complexes and
their carbene derivatives

Comp lex IR v(CO)em ! Cp
Cp(CO)PPh3FeCH(SMe)2 (407 1960°
Cp(CO)P(OPh)3FeCH(SMe)2 437 1963
{Cp(CO)PPh3Fe[CHSMe]}CF3303 [41] 2006° 4.84 (d, JPH=1.10)°
{Cp(co)P(oph)3Fe[cnsmé]}cr3so3d ] 20117 4,79 (d, Jpy=1.10)€
{Cp(co)P(oph)3Fe[cu(NEt2)]}cr3503e 451 1981°  4.82 (4, JPH=1.10)C

a
Hexane.

b
CH,Cl,.

c
CD4CN. |

d ' _ . 13

The Ccarbresonates at 320.6 (d, JPC—33.21) in "°C NMR.

©The Cqrpresonates at 239.0 (d, Jp.=39.07) in 3¢ NMR.
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CH SMe Other
14.94 2.99 (d, Jpy=0.73) 7.4 (m, Ph)
14,92 ‘ 2.96 7.27 (m, Ph)

11.36 (JPH=5.I3)

7.%1 (m, Ph), 4.11; 3.89 [q,
JHH=7.33, NCHZ]’ ]'.Lll!; 1.30
[t, Jyy=7-33, NCH,Me]
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{Cp(CO)(P(OPh)g)Fe[CH(SMe)]}CF3503,[hh], forms [43]. As expected, [41]
and [44] are more stable to moisture, though, they are reluctant to
crystallize. They have been characterized by their IR and ]H NMR

spectra, which are summarized in Table 1k.

Spectral properties

As does [4], both [41] and [44] exhibit low field proton resonances
at 14.94 and 14,92 § in CD3CN, which are characteristic of carbene

hydrogen atoms. Owing to the enhanced stability brought about by the
13

presence of L, the “C spectrum of»[hh] could also be obtained. In it,

the Ccarb is found as a doublet at 320.5 PPM (JPc = 33.21 Hz) in

CDBCN, which is approximately 46 PPM downfield from the only other l3C

resonances reported for a secondary thiomethoxyl carbene complex,
26
3

revealé the cyano carbon of acetonitrile, which is a singlet at 118.2 PPM

{Cp(NO)(PPh3)Re[CH(SMe)]}CF3SO Interestingly, the spectrum also

in pure MeCN, . as a broad peak centered at 132.2 PPM, The broadening

and downfield shift of the CN carbon resonance suégests that there is

a weak interaction between the nitrogen lone pair electrons of the
acetonitrile and the electrophilic ccarb of [B4]. To ouf knowledge,

an acetonitrile metal carbene adduct complex has never been isolated;
however, it was detected iﬁ-thé gas phase by ion cyclotron resonance
spectroscopy. Stevans and Beauchamp]3] demonstrated that Cp(CO)FeCHZNCMe+
was the product when Cp(CO)zFeCH2+, generated in stiu, reacted with

MeCN in the gas phase (Egn. 85).
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Cp(CO)ZFeCH2+ + MeCN—3>Cp(C0) , FeCH NCMe" (85)

Synthesis of

'{Cp(co)(P(OPh)3)Fe[cn(Net2)]}CF3so3

As anticipated, [44] reacts smoothly with diethylamine to afford
{Cp(;o)(P(oph)3)Fe[CH(NEt2)]}CF3503,[h5], in 56% yield (Eqn. 86). As
in [23], [45] is a pale yellow, air-stable complex which shows two
distinctive methylene and methyl groups in its ]H and ]3C NMR spectra.
The inequivalency of the ethyl groups in [45] indicate the importance

of N to cca P-P m~backbonding in the complex. The pertinent spectral

rb

data for [45] are summarized in Table 14.

{Cp(CO)P(OPh)3Fe[CH(SMe)]}CF3SO3 + HNEt,

[44) \ (86)
\ .

{Cp(co)P(oph)3Fe[CH(NEt2)]}CF3$o3

[45]
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APPENDIX 1. FINAL POSITIOHAL PARAMETERS AND THEIR ESTIMATED

STANDARD DEVIATIONS (IN PARENTHESES)® FOR

{Cp(C0) jFe[CH(SMe) P(OCH, ) ,CMe]}PF,

Atom X Y z
Fe 0.2654(1) .3525(1) 0.2579(1)
S 0.1779(2) .3879(2) 0.0648(1)
Py 0.4451(2) .3198(2) 0.1107(1)
0, 0.4991(5) 4376 (h) 0.1160(4)
0, 0.5394(6) .2489(5) 0.1673(4)
0, 0.4634(6) ‘.2823(6) 0.0219(4)
0, 0.0277(8) .2254(7) 0.2486(5)
0 0.4294(8) .1764(6) 0.3287(4)
c, 0.2864(8) .3096(7) 0.1356(5)
c, 0.6396(10) .4476(9) 0.1032(7)
Cy 0.6764(10) .2538(8) 0.1488(6)
Cyy 0.6033(10) .2930(11) 0.0007(6)
C 0.6853(9) .3356(8) 0.0755(6)
Cg 0.8297(11) .3414(10) 0.0569(7)
o 0.1211(11) .2733(8) 0.2503(6)
Cq 0.3661(11) .2441(8) 0.2981(6)
C 0.2904(12) .5205(8) 0.2314(7)

Jpositional parameters are listed in fractional unit cell

coordinates; H6 and th positions were not calculated.
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Atom X Y Z
Cio .1706(11) 0.5038(8) 0.2647(7)
Ciy .1927(12) 0.4592(8) 0.3422(7)
(I]2 .3336(13) 0.4475(9) 0.3622(6)
Cy3 .3902(11) 0.4849(8) 0.2896(7)
Ciy .1492(13) 0.2976(12) 0.9763(7)
P, .2111(3) 0.9609(3) 0.1274(2)
Fi .1081(9) 0.0540(7) 0.1006(6)
F, .3126(9) 0.8683(6) 0.1571(5)
Fs .2901(10) 0.0413(7) 0.1861(7)
F, .1344(13) 0.9374(11) 0.2079(8),
F .2873(15) -0.0130(16) 0.0583(8)
Fg .1252(16) 0.8784(10) 0.0795(12)
H, .2625 0.2266 0. 1406
Hyo .7026 0.4952 0.1413
Hyy .5804 0.4943 0.0622
Ha, .7318 0.1852 0.1506
H3b .6682 0.2800 0.2094
Hyq .5952 0.3489 -0.0467
Hyp 6457 0.2250 -0.0206
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Atom X Y Z
H9 0.3029 0.5536 0.1735
Hio 0.0791 0.5224 0.2352
H]] 0.1209 0.4373 0.3805
Hyp 0.3821 0.4184 0.m171
H 0. 4896 0.4855 0.2815

13
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APPENDIX 2. THERMAL PARAMETERS (1 x IO-A) AND THEIR ESTIMATED

STANDARD DEVIATIONS (IN PARENTHESES) FOR

{Cp(CO)ZFe[CH(SMe)P(OCH2)3CMe]}PF6

Atom

B

B

B

B

B

1 22 33 12 13 . 23
Fe 88(1) 53(1) 35(0) -2(1) 13(0) -1(0)
S 90(2) 91(2) 38(1) 8(2) 5(1) 4(1)
P, 79(2) 54(1) 31(1) 2(1) 10(1) -1(1)
0, 76 (6) 51(4) 64(3) -1(4) 26 (L) 5(3)
0, 91(7) 84(6) 56(3) 11(5) 13(4) 24(3)
0, 88(8)  140(8)  49(3)  -6(6)  21(4)  -21(k)
0, 145(11)  112(8) 77(4)  -45(8) 29(6) -7(5)
0 183(12)  82(6) 49(3) 38(7) 4(5) 10(L)
C, 62(9)  61(7)  37(4)  -9(6) 115 -3(k)
c, 89(12)  89(9) 63(6) 17(9) 27(7) 18(6)
C, 101(12) 86(9) 46(5) 20(8) 17(6) 24(5)
Cy, 88(12) 168(14)  46(5)  -10(11)  2u(6)  -32(7)
C 72(10)  86(9) Lo (L) 0(8) 14(5) 1(5)
Cg 99(12) t11(11)  67(6) 20(10) 34(7) 6(6)
¢, 123(13)  67(8) 50(5) -4(9) 27(7) -5(5)
Cq 128(14)  67(8) 40(5) -3(9) 10(7) -8(5)
c 151(15)  50(7) 52(5)  -19(9) 6(7) -5(5)
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Atom

B

B

B

B B

B

11 22 33 12 13 23
C1o 114(13)  58(8)  59(6)  13(8)  11(7)  -6(5)
C, 156(16)  72(9)  51(6)  -16(9)  16(8)  -22(6)
€y 171007)  88(10)  Wi(5)  -19(10)  8(8)  -12(5)
C3  123013)  s6(n) 61(6)  -6(8)  6(n)  -16(5)
Cyy 154(17)  175Q15)  47(5) 700 -8(8)  -52(8)
P, 138(4)  101(3)  61(2) 0(3) 1(2) -9(2)
F, 226(13)  172(10)  114(6)  36(9)  -13(7) 8(6)
F, 233(13)  138(8)  93(5)  70(8)  '6(6) 5(5)
Fa 270(16)  152(10)  156(8) -3(io) -83(10) -48(7)
Fy 328(22) 318(18) 146(9)  54(17)  87012)  95(11)
Fe 231 se0(32)  143(8)  220(27) 1W1(1S)  193(15)
Fg 436(30) 173(13)  295(18) ho(15) -189(20) -111(12)
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SUMMARY

Nitrosyl Complexes

The 18-electron complexes Cp(NO)ZW(PR3)+, where R is Ph, OPh,
OMe, undergo facile one-electron reduction to give the 19-electron
radical compounds, Cp(NO)ZW(PR3). This reduction is accomplished with
chemical reducing agents (hydrazine, alkoxides or zinc) or electro-
chemically. Cyclic voltammetric studies reveal that the reduction is
quasi-reversible, and the reduction potential increases as the o donor/
T acceptor ratio of the ligand decreases: PPh3>-P(0Me)3>'P(0Rh)3. ESR
spectra of the PPh3 and P(OPh)3 complexes are obtained and show a ten-
line pattern resulting from hyperfine coupling of the electron with
the 3P (1 = 4) and two equivalent YW nuctei (1 = 1).X-ray structural
data for the P(OPh)3 derivative show that the N-W-N angle (102.7°) is
noticeably larger than that (92.0°) in thé 18-electron chloro analog,
Cp(NO)ZWCI. In addition, the 19-electron complex hasvshorter W-N
but longer N-0 bonds than in Cp(NO)ZWCl. The structural differences
between these complexes may be understood if the 19th electron occupies
an orbital which has substantial NOI}Zn character, is antibonding be-
tween the two NO ligands, and is antibonding between the N and 0 atoms
of each NO ligand.

The P(OPh)3 radical derivative is readily oxidized back to

c¢*, Me0SO.F, CF,SO_H

Cp(NO)ZW(P(OPh)3)+ by oxidants such as Ag+, Ph 350,

3 2

and lz.



220

Carbene Complex

In the course of these investigations, we improved the synthesis
of Cp(CO)(L)Fe[CH(SMe)]+,vwhich had been previously prepared in small
quantities, by the reaction of Cb(CO)(L)Fe[C(SMe)z]+ withA(Et3BH)Li,

followed by acidification (Eqn. 1).

‘Cp(CO)(L)Fe[C(SMe)2]+ + [E¢ BHILT —>> Cp(C0) (L) FelCH (SMe) ]

+
P(OPh)3 V'* (n

Cp(CO)LFelCH(sMe) 1T

L = Co, PPh3,
+

HSMe

These thiomethoxyl secondary carbene complexes are modestly stable in
air. In the case where L is CO, this complex decomposes upon contact
with H,0 to give Cp(CO)BFe+ and Cp(CO)zFeCHZSMe in equal amounts. This -
disproportionation reaction is presumed to go through a formyl inter-
mediate, Cp(CO)ZFeCHO.

The Cp(CO)ZFe[CH(SMe)]+ complex reacts with a variety of terthary
phosphines, phosphifes and amines to afford the corresponding adducts,

_ Cp(CO)ZFe[CH(SMe)(L)]+, where L is MePPh,, PPh3, CiPPh,, PCI P(OPh)3,

3
P(OCH2)3CMe or pyridine. These adducts are noticeably more stable than
the parent carbene complex. An X;ray structural determination of the
P(OCH2)3CMe adduct shows that the iron methine, Fe-Cl, bond distance
is close to that typical of o bonds in Cp(CO)zFeR‘cdmplexes; the CI1-P

bond distance is similar to those in single-bond carbene phosphine
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adducts, MCH(R)PR!' The C1-S bond length is normal for a ¢ bond

3
such as those in MeSR(R = H, Me).
The PPh3 and P(OCH2)3CMe adducts decompose at elevated tempera-

tures to provide Cp(CO)zFeL+ (L = PPh P(OCHZ)BCMe,vrespectively);

3’

the other product identified in the pyrolysis reaction of the PPh3

adduct are cis and trans MeSCH = CHSMe, HC(SMe)3 and Cp,Fe.
Dialkyl and alkyl phosphines also form stable adducts,
Cp(CO)zFe[CH(SMe)(L)]+, (L = PPh

H, PCyzH, PPhH, or PCyHZ), with

2 2
Cp(CO)ZFe[CH(SMe)]+. The solid PthH and PCyzH adducts readily de-
compose to give the phosphine comp]exés, Cp(CO)ZFe[PRZ(CHZSMe)]+,

(R = Ph, Cy), in low yields at 168°C and 200°C, respectively. It is
not entirely clear how the rearrangement reaction takes place, but it
appears to be base catalyzed. The base involved in the rearrangement

is believed to be PR,H which may be formed by dissociation from the

2
adduct (Scheme 1).

Me SMe

cp(C0). Fe—mC—H —2—> (p(CO). Fe—C—H
2 + 2
-BH \
HPR2 PRZ
B = base '
Vv
+ _-B.

cp(C0) ,FePR, CH,SMe <s;g;— Cp(C0) ,FePR, CHSMe

Scheme |
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The PPh,H adduct reacts with strong bases (n-BuLi or Et3N) to afford

Cp(CO)ZFe[CH(SMe)(Pth)] and a small amount of Cp(CO)ZFe[PPhZ(CHZSMe)]+.
The Cp(CO)(L)Fe[CH(SMe)]+ (L = co, P(OPh)3) complexes react with

Et,NH to furnish the amino carbene complexes, Cp(CO)(L)Fe[CH(NEtZ)]+.

The ]H and 13

C spectra of both compounds display two distinctive methy-
lene and methyl groups which are indicative of a high C-N bond rota-
tional barrier causéd by strong_N to C p-p T-bonding. Likewise,
Cp(CO)ZFe[CH(NMeZ)]+ is prepared by reacting Me,NH with the correspond-
ing thiomethoxyl carbene complex. This éompound is found to react with
excess MezNH to give Cp(CO)ZFeH and NNN'N'~tetramethy!l foramidinium.
Other primary amines (MeNHZ, CyNH,, i-PriH,, t-BuNHZ) also react
with Cp(CO)zFe[CH(SMe)]+ to give the corresponding.amino carbene com-
plexes, Cp(C0),FelCH(NHR)I" (R = Me, Cy, i-Pr, t-Bu). The yields of
these reactions are in the range of 28-38%. The poor yields are due
to a secondary reaction, in which, the amino carbene feacts further
with excess amine to give Cp(CO)zFeH and the NNidialkyl foramidinium

ion. The most likely mechanism of this secondary reaction is believed

to be a B-hydrogen elimination of the ammonium complex (Scheme 2).

Ht nt
Cp(co)zFe=Q\ + NHyR—S> Cp(C0) ,Fe—C—NHR
' NHR HNHR
B-H

Cp(C0) FeH + [RHNCHNHR]Y

Scheme 2
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The primary amino hydrido carbene complexes, CP(CO)ZFG[CH(NHR)]+,
are exclusively in the trans (E) configuration. When the amino hydrogen
is removed with NaOH-EtOH, syn and anti isomers of Cp(CO)ZFe[CHNR]+
are detected in the ]H NMR spectra of the cohpounds with R = i-Pr or
Cy. On the other hand, the anti isomer is the sole form of the t-Bu
analog. The mechanism for the rapid interconversion of the iminoyl-
formyl eompounds upon deprotonation of the carbene precursors is be-
lieved to be an inversion about the nitrogen atom (lateral shifting)
rather than a C-N bond rotation. When the Cp(CO)ZFe[CHNR]+ (R = i-Pr,

Cy) is alkylated with excess Me0SO_F, E and Z isomers of

2
Cp(CO)ZFe[CH(NMeR)]+ are obtained, and the E isomer predominates when the
concentration of MeOSOZF is reduced.

The carbonyl ligand of Cp(CO)ZFe[CH(NHCy)]+ is photolytically
labile; ultraviolet irradiation of the complex in MeCN gives
Cp(CO)iMeCN)Fe[CH(NHCy)] Y. The identical  complex may also be pre-
pared by reacting Cp(CO)ZFe[CH(NHCy)]+ with Me N0 in MeCN.

The complex Cp(CO)zFe[CH(NHZ)]+ has also been prepared by the
reaction of Cp(CO)ZFe[CH(SMe)]+ or Cp(CO).zFe[CH(SMe)(Pyr)]+ with NH3.
Finally, Cp(CO)zFe[CH(SMe)]+ reacts with diazomethane at room tempera-
ture, yielding a stable deep red S-bound olefin complex,

Cp(C0) FelShe(CH=CH,) 1™
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